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PREFACE TO FIRST EDITION.

THE
relativity theory of gravitation in its complete

form was published by Einstein in November 1915.

Whether the theory ultimately proves to be correct

or not, it claims attention as one of the most
beautiful examples of the power of general mathematical

reasoning. The nearest parallel to it is found in the applications
of the second law of thermo-dynamics, in which remarkable

conclusions are deduced from a single principle without any
inquiry into the mechanism of the phenomena ; similarly, if

the principle of equivalence is accepted, it is possible to stride

over the difficulties due to ignorance of the nature of gravita-
tion and arrive directly at physical results. Einstein's theory
has been successful in explaining the celebrated astronomical

discordance of the motion of the perihelion of Mercury,
without introducing any arbitrary constant

;
there is no trace

of forced agreement about this prediction. It further leads to

interesting conclusions with regard to the deflection of light

by a gravitational field, and the displacement of spectral lines

on the sun, which may be tested by experiment.
The arrangement of this Report is guided by the object of

reaching the theory of these crucial phenomena as directly as

possible. To make the treatment rather more elementarv,
use of the principle of least action and Hamiltonian methods
has been avoided ; and the brief account of these m Chapter
VII. is merely added for completeness. Similarly, the equa-
tions of electro-dynamics are not used in the main part of

the Report. Owing to the historical tradition, there is an

undue tendency to connect the principle of relativity with

the electrical theory of light and matter, and it seems well to

emphasize its independence. The main difficulty of this

subject is that it requires a special mathematical calculus,

which, though not difficult to understand, needs time and

practice to use with facility. In the older theory of relativity
the somewhat forbidding vector products and vector operators
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constantly appear. Happily this can now be avoided alto-

gether ; bat in its place we use the absolute differential

calculus of Kicci and Levi-Civita. This is developed ab imtio

so far as required in Chapter III. Attention must be called

to the remark on notation in 19 a which concerns almost all

the subsequent formulae.

Extensive use has been made of the following Papers, which

in some places have been fotlowed rather closely :

A. EINSTEIN. Die Gmndlage der allgemeinen Relitivitats

theorie
"
Annalen der Physik,

57

XLIX., p. 769 (1916).

W. DE SITTER. On Einstein's Theory of Gravitation and
its Astronomical Consequences.

"
Monthly Notices of the

Royal Astr. Soc.," LXXVL, p. 699 (1916) ; LXXV1L, p, 155

(1916) ; LXXVHL, p. 3 (1917).

I am especially indebted to Prof, de Sitter, who has kindly
read the proof-sheets of this Report.
The principal deviations in the present treatment of the

subject will be found in Chapter VI. I have ventured to

modify the enunciation of the principle of equivalence in 27
in order to give a precise criterion for the cases in which it is

assumed to apply.
Other important Papers on the subject, most of which have

been drawn on to some extent, are .

EL HILBERT. Die Grundlagen der Physik,
Cf

Gottingen
Nachrichten," 1915, Nov. 20.

EL A. LOREOTZ. On Einstein's Theory of Gravitation,
1

Proc. Amsterdam Acad.," XIX., p. 1341 (1917),
J. DROSTE. The Field of n moving centres on Einstein's

Theory,
"
Proc. Amsterdam Acad.," XIX., p. 447 (1916).

A. EINSTEIN. Kosmologische Betrachtungen zur allge-
meinen Relitivitatstheorie,

"
BeilinSitzungsber.," 1917, Feb. 8.

Ueber Gravitationswellen, ibid, 1918, Feb. 14.

K, SCHWARZSCHILD. Ueber das Gravitationsfeld eines

Massenpunktes nach der Einstein'schen Theorie,
"
Berlin

Sitzungsber,/' 1916, Feb. 3.

T. LEVI-CIVITA, Statica Einsteiniana,
"
Rendiconti dei

Lincei," 1917, p, 458.

A, PALATINI. Lo Spostamento del Perielio di Mercuric"
Nuovo Cimento," 1917, July.
The last two Papers avoid much of the heavy algebra, but

claim a rather extensive knowledge of differential geometry,
The older theory of relativity, briefiy surveyed in the first

chapter, is fully treated in the well-known text-books of L.
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Silberstein (Macmillan & Co.) and E. Cunningham (Canib.

Univ. Press) A useful review of the mathematical theory of

Chapter III., giving a fuller account from the standpoint of

the pure mathematician, will be found in
"
Cambridge Mathe-

matical Tracts,
55

No. 9, by J. E. Wright. Finally, for those

who wish to learn more of the outstanding discrepancies
between astronomical observation and gravitational theory,
the following references may be given :

W. DE SITTER. The Secular Variations of the Elements of

the Four Inner Planets,
"
Observatory," XXXVI., p. 296.

E. W. BROWN. The Problems of the Moon's Motion,
"
Ob-

servatory," XXXVII., p. 206.

H. GLAUERT. The Rotation of the Earth,
"
Monthly Notices

of the Eoyal Astr. Soc.," LXXV., p. 489.





PREFACE TO SECOND EDITION.

THE
advances made in the eighteen months since

this Report was written do not seem to call for

any modification in the general treatment. Perhaps
the most notable event is the verification of Ein-

stein's prediction as to the deflection of a ray of light by
the sun's gravitational field. This was tested at the total

eclipse of May 29, 1919, at two stations independently, by
expeditions sent out by the Royal and Royal Astrono-
mical Societies jointly, under the superintendence of the
Astronomer Royal. The deflection, reduced to the sun's
limb should be l"-75 on the relativity theory, and 0"-87 (or

possibly zero) according to previous theories. At Principe,
where the observations were very much interfered with by
cloud, the value 1"-61 was obtained, with a probable error
of 0"-3 ; the accuracy appears to be sufficient to indicate

fairly decisively Einstein's value. At Sobral, where a clear

sky prevailed, the observed value was 1"*98
;
the accordance

of results derived from right ascensions and declinations,

respectively, and the agreement of the displacements of

individual stars with the theoretical law demonstrate in a

particularly satisfactory manner the trustworthiness of the
observations at this station. The full results will be pub-
lished in a Paper by Sir F. W. Dyson, A. S. Eddington, and
C. Davidson in the Philosophical Transactions of the Royal
Society.
The test of the displacement of the Fraunhofer lines to the

red stands where it did, and we still think that judgment must
be reserved. In view of the possibility of a failure in this

test, it is of interest to consider exactly what part of the

theory can now be considered to rest on a definitely experi-
mental basis. I think it may now be stated that Einstein's
law of gravitation is definitely established by observation in
the following form :
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Every particle and light-pulse moves so that the integral
of ds between two points on its track is stationary, where

(equation (28-8))

&= (1 2m/r)
-ldr* rW r2 sin2

6d<p* + (I2mfr)dt*

in appropriate polar co-ordinates, the co-efficient of dr* being
verified to the order m/r, and the co-efficient of dt* to the

order m2
/r

3
. This is checked for high speeds by the deflection

of light, and for comparatively low speeds by the motion of

perihelion of Mercury, so that unless the true law is of a kind
much more complicated than we have allowed for, our ex-

pression cannot well be in error.

Accepting Einstein's law in this form, the properties of

invariance for transformations of co-ordinates follow, and we
reach the conclusion that the intermediary quantity ds (to

which as yet we have assigned no physical interpretation) is

an invariant, that is to say it has some absolute significance
in external nature.

Einstein's theory (as distinct from his law of gravitation)

gives a physical interpretation to ds, as a quantity that can
be measured with material scales and clocks. It is this

interpretation which the observation of the Fraunhofer lines

should test. The quantity ds is an ideal measure of space and
time ; and it is possible that we have not yet reached finality
as to the right way of realising the ideal practically. It is a

fair prediction that an atomic vibration will register ds like

an ideal clock
;
and it is difficult to seeliow this can be avoided

unless the equations of vibration of an atom involve the

Briemann-Christofiel tensor. But, if the test fails, the logical
conclusion would seem to be that we know less about the

conditions of atomic vibration than we thought we did.

A very notable extension of the theory to include electro-

magnetic forces and gravitational forces in one geometrical
scheme has been given by Prof. H. Weyl in two Papers

Berlin, Sitzungsberichte, 1918, May 30.

Annalen der Physik, Bd. 59, p. 101.

In Einstein's theory it is assumed that the interval ds has
an absolute value, so that two intervals at diSerent points
of the world can be immediately compared. In practice
the comparison must take place by steps along an intermediate

path ;
for example, by moving a material measuring rod

from one point to the other continuously along some path.
It is possible that the result of the comparison may not be
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independent of the path followed, and Weyl considers the

electromagnetic field to be the manifestation of this incon-

sistency. This leads to a very beautiful generalized geometry
of the world, in which the electromagnetic field appears as

the sign of non-integrability of gauge, and the gravitational

field as the sign of non-integrability of direction. The theory

has important consequences though it has not suggested

any experimental test. It may be added that it appears
to favour Einstein's view of the curvature of space, which

has been treated, perhaps too unsympatlietically, m Chapter
VIII.

The writer holds the view that the fundamental equations

of gravitation (35-8), which on this theory are the sole basis

of mechanics, should be regarded as a definition of matter

rather than as a law of nature. We need not suppose that

the gravitational field has in vacuo some innate tendency to

arrange itself according to the law G>=0 ; we should rather

say that in regions of the world where this state happens to

exist we perceive emptiness ; and where the equations fail,

tke failure of the equations is itself the cause of our perception

of matter. Matter does not cause the curvature (&) of space-

time ;
it is the curvature. Just as light does not cause electro-

magnetic oscillations ; it is the oscillations. This point of

view is developed in a Paper which will appear shortly ia
"
Mind.

55

Finally, a word may be added for those who find a difficulty

in the combination, of space and time into a static four-

dimensional world, in which events do not
"
happen

"
they

are just there, and we come across them successively in our

exploration*
"
Surely there is a difference between the

irrevocable past and the open future, different in quality

from the arbitrary distinction of right and left." We agree

entirely ; but this difference, whatever it is, does not enter

into the determinate equations of physics. For physics, the

future is + t and the past 1
} just as right is + a? and left x.

If we change the place of one particle in our problem we alter

the past as well as the future, in contrast to what appears to

be the ordinary experience of life, that our interference will

alter the future but not the past. The static four-dimensional

representation may thus be not completely adequate, but it

suffices for all that comes within the purview of physics.

December, 1919.
B2





CHAPTEB I.

THE BESTBICTED PRINCIPLE OF RELATIVITY.

1. In 1887 the famous Michelson-Morley experiment was

performed witli the object of detecting the earth's motion

through the sether. The principle of the esrperiment may be

illustrated by considering a swimmer in a
river.^

It is easily

realized that it takes longer to swim to a point 50 yards

up-stream and back than to a point 50 yards aeross-stream

and back. If the earth is moving through the aether there is

a river of sether flowing through the laboratory, and a wave
of light may be compared to a swimmer travelling with

constant velocity relative to the current. If, then, we divide a

beam of light into two parts, and send one half swimming up
the stream for a certain distance and then (by a mirror) back

to the starting point, and send the other half an equal distance

aeross-stream and back, the aeross-stream beam should arrive

back first.

Let the sether be flowing relative to the apparatus with

velocity u in the direction Ox (Fig. 1) ; and let OA, OB be

the two arms of the apparatus of equal length a9 OA being

placed up-stream. Let v be the velocity of light. The time

for the double journey along OA and back is

2 -2V (1-1)*~~ P * ' ' l '

where /3=(1 u*/v
z
)"~%, a factor greater than unity.

Fof the transverse journey the light must have a com-

ponent velocity u up-stream (relative to the sether) in order

to avoid being carried below OB ; and, since its total velocity
is ?, its component aeross-stream must be \S(v*~uz

). The
fame for the double journey OB is accordingly

*
2a -**

*~V(
so that #! > 2 .
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But when the experiment was tried, it was found that l>oth

parts of the beam took the same time, as tested by the inter-

ference bands produced. It would seem that OA and OB
could not really have been of the same length ; and if OB
was of length a l5 OA must have been of length ajp. The

apparatus was now rotated through 90, so that OB became

the up-stream arm. The time for the two journeys was again

the same, so that OB must now be the shorter arm. The plain

meaning of the experiment is that both arms have a length a l

when placed along Oy, and automatically contract to a length

0J//S when placed along Ox. This explanation was first given

by FitzGerald.

It is not known how much the earth's motion through the

aether amounts to ; but at some time during the year it must

FIG. 1.

be at least 30 km, per sec,, since the earth's velocity changes

by 60 km. per sec. between opposite seasons. The experiment
would have detected a velocity much smaller than this (about

$ km. per sec.), if it were not for the compensating contraction

of the arms of the apparatus. By experimenting at different

times of the year with different orientations the existence of

the contraction has been fully demonstrated. It has been

shown that it is independent of the material used for the arms,

and the contraction is in all cases measured by the ratio

===(! -ttV^r*-
It is now known that this contraction fits in well with the

electrical theory of matter, and may be attributed to changes
in the electromagnetic forces between the particles which

determine the equilibrium form of a so-called rigid body.
This umveisal property of matter is therefore not so mysterious*
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as it at first seemed ; and we sliall not here discuss the un-

successful attempts at alternative explanations of the

Michelson-Morley experiment, e.^., by assuming a convection

of the eether by the earth.

2. The Michelson-Morley experiment has thus unexpectedly
failed to measure our motion through the sether, and many
other ingenious experiments have failed in like manner. So
far as we can test, the earth's motion makes absolutely no
difference in the observed phenomena ; and we shall not be
led into any contradiction with observation if we assign to the

earth any velocity through the aether that we please. It is

interesting to trace in a general way how this can happen.
Let us assign to the earth a velocity of 161,000 miles a second,

say, in a vertical direction. With this speed /?=2, and the

contraction is one-half. A rod 6 feet long when horizontal

contracts to 3 feet when placed vertically. Yet we never

notice the change. If the standard yard-measure is brought
to measure it, the rod will still be found to measure two yards ;

but then the yard-measure experiences the same contraction

when placed alongside, and represents only half-a-yard in that

position. It might be thought that we ought to see the change
of length when the rod is rotated. But what we perceive is

an image of the rod on the retina of the eye ;
we think that

the image occupies the same space of retina in both positions ;

but our retina has contracted in the vertical direction without

our knowing it, and our estimates of length in that direction

are double what they should be. Similarly with other tests.

We might introduce electrical and optical tests, in which the

cause of the compensation is more difficult to trace ; but, in

fact, they all fail The universal nature of the change makes
it impossible to perceive any change at all.

3. This discussion leads us to consider more carefully what
is meant by the length of an object, and the space which we
consider it to occupy. To the physicist, space means simply
a scaffolding of reference, in which the mind instinctively
locates the phenomena of nature. Our present point of view
assumes that there is a

"
real

"
or

"
absolute

"
scaffolding,

in which a material body moving with the earth changes its

length according as it is oriented in one direction or another.
On the other hand, the human race (and its predecessors) have
conceived and used a different scaffolding the space of

appearance in which a material body moving with the earth
does not change length as its orientation alters. It often
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happens that a primitive conception is ambiguous, and lias

to be re-defined when adopted for scientific purposes ; but

there is little justification for doing this in the case of space.

Firstly, the space of appearance is perfectly suitable for

scientific purposes, since we have just seen that it is impossible
to detect experimentally that it is not the absolute space

Secondly, so long as we cannot detect our motion through
the aether, we do not know how to convert our observations

so as to express them in terms of absolute space. Thirdly,
for all we know, our velocity through the aether may be so

great that the absolute space and the space of appearance do
not even approximately correspond ; thus we might be re-

volutionising rather than re-defining the common conception
of space.

It will therefore be considered legitimate to use the words
"
space

" and
**

length
"

with their current significance A
rigid body on the earth is generally considered not to change
length when its direction is altered, and by this property we
block out a scaffolding of reference for our measures and
locate objects in our space the space of appearance. But
we have learnt one important thing. Our space is not abso-

lute
;

it is determined by our motion. If we transler our-

selves to the star Arcturus, which is moving relatively to us

with a speed of more than 300 km. per sec., our space will

not suit it, since it was designed to eliminate our own con-

traction effects. The contraction ratio ft must be different

for Arcturus
;
and the space surveyed with a material yard-

measure carried on Arcturus will differ slightly from the space
surveyed with the same yard-measure on the earth. It may
also be noted that there is a slight difference in our own space
in summer and winter (owing to the change of the earth's

motion), and this may have to be taken into account in some

pplications.

Accordingly by
"
space

" we shall mean the space of appear-
ance for the observer considered. It becomes definite when we

specify the motion of the observer. In particular, if the
observer is at rest in the aether, the corresponding space is

what we have hitherto called the
"
absolute space."

The possibility of different observers using different spaces
may be illustrated by considering the question, What is a
circle ? Suppose a circle is drawn on paper in the usual way
with a pair of compasses. An observer 8, who believes the

paper to be moving through the aether with a great velocity,
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mast, in accordance with the Michelson-Morley experiment,

suppose that the distance between the points of the compasses
changed as the curve was described

;
he will therefore deem

the curve to be an ellipse. Another observer S'3 who believes

the paper to be at rest in the s&ther, will deem it to be a circle.

There is no experimental means of finding out which is right
in his hypothesis. We have, therefore, to admit that the

same curve may be arbitrarily regarded as an ellipse or as a

circle. That illustrates our meaning when we say that S and
S' use different spaces, the curve being an ellipse in one space
and a circle in the other

4. The failure of all experimental tests to decide whether
the space of S or of S' is the more fundamental is summed up
in the restricted Principle of Eelativity. This asserts that

it is impossible by any conceivable experiment to detect uniform
motwn through the cether. This generalisation is based on a

great amount of experimental evidence, which is fully dis-

cussed in text-books on the older theory of relativity. Here
it is perhaps sufficient to state that experimental confirmation

appears to be sufficient,* except in regard to the question
whether gravitation falls within the scope of the principle.
We shall assume that the principle is true universally.

Let x', y\ z', be the co-ordinates of a point in the space
of an observer S' ;

and let x, y, z be the co-ordinates of the
same point in the space of an observer S at rest in the sether.

Let $' move relatively to S with velocityu inthe direction Ox.

S', using his own space, has no knowledge of his motion through
the aether, and he makes all his theoretical calculations as

though he were at rest ; from what has been already said,

he will not discover any contradiction with observation.

According to ordinary kinematics the relation between the
co-ordinates and the times (t

f

, t) in the two systems would be

x'=x-ut, ?/=/, z'=z, *'= . . . (4-1)

But the first of these must be modified, because in the in-

direction S"s standard of length is contracted in the ratio I/ft.
The equation becomes *

%'=p(x~ut). (4-15)

In order to satisfy the principle of relativity, it appears that
the time tf used by S' must differ from the time t used by 8.

* /.., sufficient to assert 6he wnfo&attltly, aot necessarily the perteefc
accuracy, of the principle.
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We shall suppose that both observers use the same value for

the velocity of light ; this is merely a matter of co-ordinating

their units, the significance of which will be considered in the

next paragraph. Let S' observe the time t' taken for the

double journey OB=2a^ in Kg. 1. It must agree with his

calculated time, which is, of course, Za^v. Thus

But in (1-2), when we were using $'s co-ordinates, we found

the time to be

t=2aip/v.
Hence

*=#'.

This also fits the double journey OA. $', unaware of his

motion, does not allow for any contraction, and calculates the

time for the double journey as

But S recognises the contraction, and considers the distance

travelled to be %a lf
j

j3.
Hence calculating as in (1*1), he makes

the time to be

so that again t=j3t'.

Accordingly S' must use a unit of time longer than that of

S in the ratio ft ; otherwise he would find a discrepancy
between observation and calculation.

There is another difference in time-measurement involved.

According to S, the light completes the half-journey OA in a

time ~-^~ in /S's units, or in $ns units of time. But
v u vu

But the difference in the time of leaving and reaching A
must be deemed by S' to be a,i/v ;

he must therefore set his

clock at A a-iU/v* slow compared with the clock at O, He
has no idea that it is slow

;
he has attempted to adjust the

two clocks together. But his determination of simultaneity
of events at and A differs from that of S, because he allows

a different correction for the time of transit of tlie light.
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Including both these differences, we see that the relation

between the times adopted by S and S' is

Substituting this value of t in (4 15) we obtain after an easy

reduction

x^P(x'+ut'}.

Collecting together our results, we have the formulae of

transformation

By the principle of relativity nothing is altered if 8 is in

motion relative to the aether ;
so the relations (4-2) must hold

between the spaces and times of any two observers having

relative velocity u.

By solving (4-2) for a;', y
f

, %', t', we obtain the reciprocal

relations

These might have been written down immediately, because

interchanging S and S' is equivalent to reversing the sign of u ;

but it will be seen later that the verification by direct solution.

of (4-2) is important.
5. We have supposed that S and S' adopt the same measure

for the velocity of light ; this was in order to
secure^that

the

units of velocity used by S and S' correspond. It is no use

for S to describe his experiences to S' in terms of units which

are outside the knowledge of the latter ; but if S states that a

velocity occurring in his experiment is a certain fraction of the

velocity of light> S' will be able to compare that with his own

experimental results. By the principle of relativity any other

velocities occurring in their experiments under similar con-

ditions will correspond ; and, for example, we see from (4 2)

and (4*3) that they will agree in calling their relative velocity

-\-u and u respectively.
Whilst this settles the consistency of the units of velocity

used in (4-2) we have not yet secured that the units of length

correspond. A description of Brobdingnag by a Brobding-

nagian would not have mentioned the most striking feature

of that country ; it needed an intruding Gulliver to detect
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the enormous scale of everything contained. And so we may
ask whether a natural standard of length, say a hydrogen
atom, at rest in $ 5

s system will be of the same size in terms
of x, y, z, as a hydrogen atom at rest in 8"$ system in terms
of x\ y\ z\ Clearly it will be misleading if we do not correlate

the co-ordinates so as to satisfy this.

To allow for a possible non-correspondence oi the units of

length in (4-2) we can. write the transformation more generally

ib^jS^'+wO, ty^y\ kz=z', H^f}(t'+ux'lv*) , (5-2)

where Jc depends on the magnitude, but clearly not on the

direction, of u.

But now applying (5-2) the reverse way, i.e., regarding
x, t/, z

9 t as a system moving with velocity u relative to

&'? y'> %'> t', we shall have

fo^/Jfc-ttf), %'=y, feW, Jct'=:p(t-ux/v
2
) . (5-3)

which is clearly inconsistent with (5-2) unless k=l. Hence (4*2)

gives the only possible correspondence of the units of length*
Wethus usethe remarkable property of reciprocitypossessed

by (4-2) and (4-3), but not by (5-2) and (5-3), to fix the necessary
correspondence of the units. The dimensions of a motionless

hydrogen atom will now be the same in'both systems ; for, if

not, we could find a system in which the dimensions were
either a maximum or a minimum

; and that system would
give us an absolute standard from which we could measure
absolute motion

It is thus clear that S' will actually measure his space and
time by the variables x\ y', z', t' given by (4-3), if he sets

about choosing his units in the same way that S did.
6. We have established the connection between the co-

ordinates used by 8 and S' by reference to simple criteria.

It is interesting to work out in detail the correspondence of
the two systems for other and more complex phenomena,
showing that the transformation always works consistently.
But the standpoint of the 'principle of relativity rather dis-

courages this procedure. Its view is that the indifference of
all natural phenomena to an absolute translation is something
immediately understandable, whilst the contractions and other

complications entering into our description arise from our own
perversity in not looking at Nature in a broad enough way.When a rod is started from rest into uniform motion, nothing
whatever happens to the rod. We say that it contracts ; but
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length is not a property of the rod
; it is a relation between

the rod and the observer. Until the observer is specified the

length of the rod is quite indeterminate. We ought always to
remember that our experiments reveal only relations, and not

properties inherent in individual objects ; and then the corre-

spondence of two systems, differing only in uniform motion,
becomes axiomatic, so that laborious mathematical verifica-
tions are redundant. Human minds being what they are, that
is a counsel of perfection, and we shall not follow it too strictly.
The only verification that is needed is to show that our

fundamental laws of mechanics and electrodynamics are con-
sistent with the principle of relativity. This will be done in
connection with a much more general principle of relativity
for mechanics in 37, and for electrodynamics in 45. *~

7. (a) As an illustration of the modification of ordinary
views required by this theory, we may notice the law of

composition of velocities. Consider a particle moving relative
to S with velocity w along Ox, so that

The velocity relative to <S' will be

The velocity relative to S' is thus not w u, as we should
have assumed in ordinary mechanics.

It has been pointed out by Robb that the addition-law for
motion in one dimension can be restored if we measure motion

by the rapidity, tanhr^w/u), instead of by the velocity w.

Equation (7-2) gives

{w/'y) . . (7-3)

Since tanh"1l=oo
, the velocity of light corresponds to

infinite rapidity, and we may compound any number of

relative velocities less than that of light without obtaining a
resultant greater than the velocity of light,

(&) To find the relation of the densities (o-=number of par-
ticles per unit volume) in the two systems, we can easily verify
that the Jacobian a(j/, y', z\ t')/d(x, y, z, *)=!, so that

dx'dy'ikfdt'dxdydzdt ..... (7*4)
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But the number of particles in a particular element of volume
cannot depend on the co-ordinates used to describe the element,
hence

o-'dx'dy'dz'=vdxdydz. . . (7-5)

<r
r

dt' ( uw\
Hence ==

:ji ==/M * r) .....
<r dt

r
\ iP i

since dx/dt=w.
In particular, if ^=0, so that v is the density referred to

axes moving with the matter,

cr'=cr........ (7-65)

Since the mass of a particle may depend on its motion, we
cannot assume that the ratio p'/p of the mass-density is the

same as that of the distribution-density <r'/cr.

When the transformation (4-2) was first introduced in

electro-dynamics by Larmor and Lorentz, if was regarded as

a fictitious time introduced for mathematical purposes, and it

was scarcely realised that it was the actual measured time of

the moving observer. Einstein in 1905 first showed that

velocity and density would be estimated by the moving
observer in the way given above, and thus removed the last

discrepancy between the electrodynamical equations for the

two systems.
(c) In order to find the change (if any) of mass with velocity,

consider a body of massm 1? m/ (in the two systems of reference)

moving with velocity w ly w. Let

Working out />/ by using (7-2), we easily find

AiW=^iK^) ..... (7-71)

Let a number of bodies be moving in a straight line subject
to the conservation of mass and momentum, i.e.,

2ml and Zm
1w\ arc conserved.

Then, since u and p are constants,

pZm^w^u) will be conserved.

Therefore by (7-71)

S~~^~Wi is conserved. . . . (7-72)

But since momentum must be conserved for the observer Sf

Sm
t'wi is conserved .... (7-73)
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The results (7 72) and (7-73) will agree if

Wt m/
*=-5->=w , say,

Pi Pi

and it is easy to show that there is no other solution. Hence

m^moP^m^l-wf/v*)-* .... (7-8)

where w is constant and equal to the mass at rest. This is

the law of dependence of mass on velocity.

Neglecting w^jv\ we have

Wl==^ +(imow 1
2
)/t;

2 .... (7-85)

so that we may regard the mass as made up of a constant

mass m belonging to the particle, together with a mass pro-

portional to, and presumably belonging to, the kinetic energy.

If we choose units so that the velocity of light is unity, the

mass of the energy is the same as the energy, and the dis-

tinction between energy and mass is obliterated. Accordingly
m is also regarded as a form of energy. (It is usually identified

mainly with the electrostatic energy of the electrons forming

the body )

Since the conservation of mass now implies the conservation

of energy we have to restrict the reactions between the bodies

in the foregoing discussion to perfectly elastic impacts. Other

interactions would require a more general treatment ; in fact,

if the energy is not conserved, the momentum is not perfectly

conserved, because the disappearing energy has mass and

therefore carries off momentum.
In this discussion we are justified in pressing the laws of

conservation of mass and momentum to the utmost limit as

holding with absolute accuracy, since the definition and

measurement of mass (inertia) rests on these laws,* and

unless we have an accurate definition it is meaningless to

investigate change of mass. In astronomy, however, the

masses of heavenly bodies are measured by their gravitational

effects ; naturally we cannot legitimately apply (7-8) to

gravitational mass without a full discussion of the law of

gravitation.
It should be noticed that this change of mass with velocity

is in no way dependent on the electrical theory of matter.

* The mass here discussed is sometimes called the
"
transverse mass."

The so-called longitudinal mass is of no theoretical importance t it is not

conserved, it does not enter into the expression, for th momentum or energy,
and it has no connection with gravitation.
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(d) To find the transformation of mass-density, p, we have

which becomes by (7-71)

(7-91)

In particular, if p is the density in natural measure, i.e.,

referred to axes moving with the matter, p the density referred

to axes with respect to which the matter has a velocity u,

p=/8
a
Po (7-92)

8. Of late years the domain of the electromagnetic theory
has been extended, so that most natural phenomena are now
attributed to electrical actions. The relativity theory does

not presuppose an electromagnetic theory either of matter or

of light ; but, if we accept the latter theories, it becomes

possible to state exactly the points on which experimental
evidence is required in order to establish our hypothesis.
The experimental laws of electromagnetism are summed up
in Maxwell's equations ; and in so far as these cover the

phenomena, the complete equivalence of the sequence of events

in a fixed system described in terms of x, y, z, t, and a moving
system described in terms of x\ y'y

z'
3 ', has been established

analytically. So far as is known, only three kinds of force are

outside the scope of Maxwell's equations.

(1) The forces which constrain the size and shape of an
electron are not recognised electromagnetic forces. For-

tunately the properties of an electron at rest and in ex-

tremely rapid motion can be studied experimentally, and
it is believed that they change in the way required by
relativity.

(2) The phenomena of Quanta appear to obey laws outside

the scope of Maxwell's equations. Theoretically these laws
fit in admirably with relativity, since Planck's fundamental
tuiit of action is found to be unaltered by the choice of axes.

But on the experimental side, evidence of the relativity of

phenomena involving quantum relations has not yet been

produced. This is particularly unfortunate, because the
vibration of an atom depends on quantum relations ; and it is

practically essential to the relativity theory that an atom

(acting as a natural clock) should keep the time appropriate
to the axes chosen
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(3) Gravitation is outside tlie electromagnetic scheme. The

Michelson-Morley experiment is necessarily confined to solids

of laboratory dimensions, in which internal gravitation has

no appreciable influence. There is, therefore, no experimental

proof that a body such as the earth, whose figure is determined

mainly by gravitation, will undergo the theoretical contraction

owing to motion. The most direct evidence that gravitation
conforms to relativity comes from a discussion by Lodge* of

the effect of the sun's motion through the sether on the peri-

helia and eccentricities of the inner planets. If gravitation is

outside the relativity theory (the Newtonian law holding

unmodified) a solar motion of 10 km. per sec. would produce

perturbations in the eccentricities and perihelia of the earth

and Venus, which could probably be detected by observation.

The absence of these perturbations seems to show that gravita-
tion must conform to relativity, unless, indeed, the sun happens
to be nearly at rest in the sether. If we confine attention to

our local stellar system the average stellar velocities are not

so much greater than 10 km. per sec. as to render the lattei
4

alternative too improbable ; but the very high velocities found

for the spiral nebulae (which are thought to be distant stellar

systems) makes it improbable that our local system should be

so nearly at rest in the aether.

"
Phil. Mag.," February, 19i8.



CHAPTEB II

THE RELATIONS OF SPACE, TIME AND FOKCE.

9. An interesting aspect of the transformation of the

variables x, y, z, t to x', y', z', t' has been brought out by
MinkowskL We consider them as co-ordinates in a four-

dimensional continuum, of space and time. Choose the units

of space and time so that the velocity of light is unity, and set

t=ir, where i=v/ L

The equations of transformation (4*2) become

(9-1)

Let u=i tan 0, so that 6 is an imaginary angle. Then

/?=cos 6, and (9*1) becomes

r'sin 0, y=y', z~z', r=r/
cos 0+s/sin . (9-2)

Thus the transformation is simply a rotation of the axes of

co-ordinates through an imaginary angle 6 in the plane of XT.

We know that the orientation chosen for the space-axes,
a?, /, 2, makes no difference in Newtonian mechanics. The
principle of relativity extends this so as to include the axis r.

The continuum formed of space and imaginary time is perfectly

isotropic ; the resolution into space and time separately, which

depends on the motion of the observer, corresponds to the

arbitrary orientation in it of a set of rectangular axes.

10. From this point of view the strange conspiracy of the
forces of Nature to prevent the detection of our absolute
motion disappears There is no conspiracy of concealment,
because there is nothing to conceal. The continuum being
isotropic, there is no orientation more fundamental than any
other ; we cannot pick out any direction as the absolute time
any more than we can pick out a direction in space as the
absolute vertical, Up-and-down, right-and-left, backwards-
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and-forwards, sooner-and-later,* equally express relations to

some particular observer, and have no absolute significance.

In Minkowski's famous words,
6S
Henceforth Space and Time

in themselves vanish to shadows, and only a kind of union of

the two preserves an independent existence."

The scientific basis of the idea that some fundamental

division into space and time exists was the conception of the

aether as a material fluid, filling uniformly and isotropically a

particular space. It now seems clear that the aether cannot

have those material properties which would enable it to serve

as a frame of reference. Its functions seem to be limited to

those summed up in the old description
"
the nominative of

the verb
'

to undulate.'
"

Unfortunately the simplicity of this conception of the four-

dimensional continuum is only formal ; and natural pheno-
mena make a discrimination between r and the other variables

by relating themselves to an imaginary r, which we call the

time. In natural variables, x, y, z, t, this view of the trans-

formation as a rotation of axes becomes concealed.f
11. In the four-dimensional continuum the interval ds

between two point-events is given by

. . . (11-1)

which is unaffected by any rotation of the axes, and is therefore

invariant for all observers. The minus sign given to ds* is an

arbitrary convention, and the formula is simply the generalisa-

tion of the ordinary equation

The fact that ds is measured consistently by all observers

who would obtain discordant results for 8x9 dy, dz, dr separately,

is so important in our subsequent work that we shall consider

the nature of the clock-scale needed for its measurement.

We have a scale AB divided into kilometres, say, and at

each division is placed a clock also registering kilometres.

* This applies to imaginary time. With real time, events which (as

usually happens) are separated by a greater interval in time than in space

preserve the same order for all observers. But an event on the sun which

we should describe as occurring 2 minutes later than an event on the earth

might be described by another observer as 2 minutes earlier. (Both ob-

servers have corrected their observations for the light-time.)

t For a logical study of the properties of the continuum of space and real

time reference may be made to A. A. Robb,
" A Theory of Time and Space

"

(Camb. Univ. Press).
C 2r
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(Tie velocity of light being unity, a kilometie is also a unit of

time = a-obVoo" sec.) When, the clocks are correctly set and

viewed from A, the sum of the readings of any clock and the

division beside it is the same for all, since the scale-reading

gives the correction lor the time taken by light in travelling

to A. This is shown in Tig. 2, where the clock-readings are

given as though they were being viewed from A.

Now lay the scafe in line with the two events ; note the

clock and scale-reading, 1?
^

1? of the first event, and the

corresponding readings ^ 2 > ^ of tte second event ; then from

(11-1)

a^l.-^M''.--^)
1 .... (11-2)

If the scale had been set in motion in the direction AB9

<ra
-~

"i would have been diminished,, owing to the divisions

having advanced to meet the second event. But the clocks

would have been adjusted differently, because A is now

Fio. 2.

advancing to meet the light coming from any clock, and the

clock would appear too fast (by the above rule) if it were not

set back. There are other second-order corrections arising

from the contraction of the scale and change of rate of the

clocks owing to motion ; but the net result is a perfect com-

pensation, and dsz determined from (11-2) must be invariant,

as already proved.
It is clear that the whole (restricted) principle of relativity

is summed up in this invariance of ds, and it is possible to

deduce the equation of transformation (4 2) and our other

previous results by taking this as postulate.
When 8s refers to the interval between two events in the

Itistory of a particular particle it has a special interpretation
which deserves notice. If we choose axes moving with the

particle, dx9 dy> <5z==0, so that ds=*dt. Accordinglythe variable

s is called the
"
proper-time," i.e., the time measured by a

clock attached to the particle,

12. Up to the present we have discussed a particular type
of transformation of co-ordinates, viz., that corresponding to
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a uniform motion of translation. We now enter on the theory
of more general changes of co-ordinates

The co-ordinates x, y, z, t of a particle trace a curve in lour

dimensions which is called the world-line of the particle. If

we draw the world-lines of all the particles, light-waves and
other entities,we obtain a complete history of the configurations
of the Universe for all time. But such a history contains a

great deal that is necessarily outside experience. All exact

observations are records of coincidences of two entities in

space and time, that is to say 3records of intersections of world-
lines.

It is easy to see that this is the case in laboratory experi-
ments or astronomical observations. Electrical measurements,
determinations of temperature, weight, pressure, &c., rest

finally on the coincidence of some indicator with a division

on a scale. Many of our rough observations depend on co-

incidences of light waves with elements of the retina, or the
simultaneous impact of sound-waves on the ear. It is true

that some of our external knowledge is not obviously of this

character. We estimate the weight of a letter, balancing it

in the hand ; this is based on a muscular sensation having no
immediate relation to time and space, but we fit this crude

knowledge into the exact scheme of physics by comparing it

with more accurate measures based on coincidences.

The observation that the world-lines oftwo particles intersect

is a genuine addition to knowledge, since in general lines in

space of three or four dimensions miss one another. We have
to build up our conception of the location of objects in space
and time from a large number of records of coincidences. It

is clear that we have a great deal of liberty in drawing the

world-lines, whilst satisfying allthe intersections. Let us draw
the world-lines in some admissible way, and imagine them
embedded in a jelly. If the jelly is distorted in any way, the
world-lines in their new courses will still agree with observation,
because no intersection is created or destroyed.*

Mathematically this can be expressed by saying that we may
make any mathematical transformation of the co-ordinates. If

we choose new co-ordinates x', y', z'
} t', which are any four

independent functions of x, y, z, t, a coincidence in x, y, z, t

will also be a coincidence in. x', y', %', t', and vice versa. By
locating objects in the space-time given by x'y y', z', t', we do
not alter the course of events. The events themselves do not

presuppose any particular system of co-ordinates, and the
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space-time scaffolding is something introduced arbitrarily by
ourselves.

It is almost a truism to say that we may adopt any system
of co-ordinates we please. We are accustomed to introduce
curvilinear co-ordinates or moving axes without apology,
whenever they simplify the problem. But there is one point
not so generally recognised. Ordinarily when we use curvi-
linear co-ordinates we never allow ourselves to forget that

they are curvilinear ; it is a mathematical device, not a new
space, that we adopt. Perhaps the only case in which we
really take the new co-ordinates seriously is in the trans-
formation to rotating axes ; we then take account of the
rotation by adding a fictitious centrifugal force to the equations,
and thenceforth the rotation is quite put out of mind. From
the standpoint of relativity, when we adopt new co-ordinates

'> y'y z'> t', we shall adopt a corresponding new space, and think
no more of the old space. For instance, a

"
straight line

"
in

the new space will be given bv a linear relation between
*, y', *, f.

^

The behaviour of natural objects will no doubt appear very
odd when referred to a space other than that customarily used.
So-called rigid bodies will change dimensions as they move

;

but we are prepared for that by our study of the Michelson-

Morley contraction. Paths of moving particles will for no
apparent reason deviate from the

"
straight line," but, accept-

ing the definition of a force as that which changes a body's
state of rest or motion, this must be attributed to a field* oi
force inherent in the new space (cf. the centrifugal force).

Light-rays will alfeo be deflected, so that the field of force acts
on light as well as on material particles ? this is not altogether
a novel idea, because a little reflection shows that the centri-

fugal force deflects light as well as matter although optical
problems are not usually treated in that way.

13. The laws of mechanics and electrodynamics are usually
enunciated with respect to

"
unaccelerated rectangular axes,"

or, as they are often called,
"

Galilean axes." We cannot

regard such axes as recognisable intuitively, and the only
definition of them that can be given is that they are the axes
with respect to which that particular form of the laws holds.
It is part of the method of the present theory to restate the
laws of Nature in a form not confined to Galilean co-ordinates,
so that all systems of co-ordinates are regarded as on the same
footing.
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In unaccelerated rectangular co-ordinates the path of a

particle is a straight line (apart from the influence of other

matter, or the electromagnetic field)* When we transform to

other co-ordinates the path is no longer straight, i.e., it is no

longer given by a linear relation between the co-ordinates ;

and the bending of the path is attributable to a field of force

which comes into existence in the new space. This field of

force has the property that the deflection produced is inde-

pendent of the nature of the body acted on, being a purely

geometrical deformation. Now the same property is shared

by the force of gravitation the acceleration produced by a

given gravitational field is independent of the nature or mass

of the body acted on. This has led to the hypothesis
that gravitation may be of essentially the same nature

as the geometrical forces introduced by the choice of

co-ordinates.

This hypothesis, which v/as put forward by Einstein, is

called the Principle of Equivalence. It asserts that a gravita-

tional field of force is exactly equivalent to a field of force introduced

by a transformation of the co-ordinates of reference, $o*that by no

possible experiment can we distinguish between them.

In Jules Verne's story,
"
Round the Moon/

5

three men are

shot up in a projectile into space. The author describes their

strange experiences when gravity vanishes at the neutral point
between the earth and moon. Pedantic criticism of so de-

lightful a book is detestable ; yet perhaps we may point out

that, for the inhabitants of the projectile, weight would vanish

the moment they left the cannon's mouth. They and their

projectile are falling freely all the time at the same rate, and

they can feel no sensation of weight. They automatically

adopt a new space, referred to the walls and fixtures of their

projectile instead of to the earth. Their axes of reference are

accelerated falling towards the earth ; and this transforma-

tion of axes introduces a field of force which just neutralises

the gravitational field. But, whilst they could
jdetect

no

gravitational field by ordinary tests, it is not obviously im-

possible for them to detect some effect by optical or electrical

experiments. According to the principle of equivalence, how-

ever, no effect of any kind could be detected inside the pro-

jectile ; the gravitational field cannot be differentiated from a
transformation of co-ordinates, and therefore the

same^trans-

formation which neutralises mechanical efieots neutralises all

other effects.
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It will be seen that this principle of* equivalence is a natural

generalisation of the principle of relativity. An occupant of

the projectile can only observe the relations of the bodies inside

to himself and to each other. The supposed absolute accelera-

tion of the projectile is just as irrelevant to the phenomena as

a uniform translation is. The mathematical space-scaSoldmg
of Galilean axes, from which we measure it, has no real

significance. If the projectile were not allowed to fall, gravity
would be detected or rather the force of constraint which

prevents the fall would be detected. I think it is literally true

to say that we never feel the force of the earth's attraction on

our bodies ; what we do feel is the earth shoving against our

feet.

14. A limitation of the Principle of Equivalence must be

noticed. It is clear that we cannot transform away a natural

gravitational field altogether. If we could, we should un-

consciously make the transformation and adopt the new co-

ordinates just as the inhabitants of the projectile did. They
were concerned with a practically infinitesimal region, and
for an infinitesimal region the gravitational force and the

force due to a transformation correspond ; but we cannot find

any transformation which will remove the gravitational field

throughout a finite region. It is like trying to paste a fiat

sheet of paper on a sphere, the paper can be applied at any
point, but as you go away from the point you soon come to a

misfit. For this reason it will be desirable to define the exact

scope of the principle of equivalence. Up to what point are

the properties of a gravitational field and a transformation
field identical ? And what properties does a gravitational
field possess which cannot be imitated by a transformation ?

The impossibility of transforming away a gravitational field is,

of course, an experimental property ; so that, in spite of the

principle of equivalence, there is at least one means of making
an experimental distinction-

Space-time in which there is no gravitational field which
cannot be transformed away is called homaloidal. In homa-
loidal space-time then, we can choose axes so that there is no
field of force anywhere. Remembering that we have no means
of defining axes except from the form of the laws of Nature
referred to them, we should naturally take these axes as
fundamental and name them **

rectangular and unaccelerated."
The dynamics of homaloidal space would not recognise the
existence of gravitation. Our space is not like that, though
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we believe that at great distances from all gravitating matter
it tends towards this condition as a limit. The necessary
limitation of the principle ot equivalence turns on the number
of consecutive points for which gravitational space-time agrees
with homaloidal space-time ; in other words, the equivalence
will hold only up to a certain order of differential coefficients.

Properties involving differential coefficients up to this order
will be the same in the gravitational field as in a homaloidal
field ; whilst properties of the transformed field involving
differential coefficients of higher order will not necessarily hold
in the gravitational field

The determination of the order of the differential coefficients

fo: which agreement is possible must be deferred to 27.

Meanwhile it may be noted that we can always choose axes
for which the field at a given point vanishes viz., take rect-

angular axes moving with the acceleration at that point. In
that case we are said to use

"
natural measure."

15. At a point of space where there is no field of force the
observer's clock-scale, if unconstrained, will be either at rest

or in uniform motion. We have seen that the measured
interval, ds, between two events is independent of uniform

motion, and hence a unique value of ds is determined by the
measures.

Using rectangular co-ordinates, the relation between an
infinitesimal measured interval ds and the inferred co-ordinates

of the event is (11-1).

. . . (15-1)

Introduce new co-ordinates xv x& x& x& which are any
functions of x, y, z> t given by

Tim ^= 1+ -l-^8+ 4) 40. . (15-2)

Substituting (15-2) on the right-hand side of (15-1), we
obtain a general quadratic function of the infinitesimals, which

may be written,

dx2dx^2g^dx^dx^ .

(15-3)

where the y's are functions of the co-ordinates, depending on
the transformation,
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As n illustration we maytake the transformation to rotating
axes

XX-L cos (DX -x 2 sin

yx^ sin a>#4 -j-x.2 cos

Whence
<#:r cos a>x^dx l sin oyx^.dx^ &>(#i sin a>x^-\-x^ cos

$y^= sm cox^dx^-^ cos cosc4,d#2~j- ft)(Xj cos o>#4 #2 sin

Substituting in (15-1)

ds~ == <fcr* foa rfa/3 -f- (1 o>
2
(:

.& CO*Cj[GJ2?2^*^4 ** (lc)~D/

By comparing this with (15 3) we obtain the values of the gr's

for this system of co-ordinates.

16. These values of the gr's express the metrical properties of

the space that is being used. But the observer has no im-

mediate perception of them as properties of space. He does

not reaHse that there is anything geometrically unnatural
about axes rotating with the earth, but he perceives a field of

centrifugal force. Experiments, such as Foucault's pendulum
and the gyro-compass, designed to exhibit the absolute

rotation ot the earth, are more naturally interpreted as de-

tecting this field of force.

Thus the coefficients g ll9 &c., can be taken as specifying a
field of force. That they are sufficient to define it completely
may be seen from the following consideration. The world-line

of a particle under no forces is a straight line in the system
a?, ?/, 2, , and its equation may be written in the form

r is stationary ; (16*1)

but in this form the equation is independent of the choice

of co-ordinates, and applies to all systems. If we choose
new co-ordinates, the world-line given by (16*1) becomes
curved and the curvature is attributed to the field of force

introduced ; but clearly the curvature of the path can only
depend on the expression for ds in the new co-ordinates, t.e.,

on the gr's. Thus the force is completely defined by the y's.

It will be noticed that in (15-5)

(16-2)

where Q=|co^(^^+^2) r::=the potential of the centrifugal force*
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Thus #4i can be regarded as a potential ;
and by analogy

all the coefficients are regarded as components of a generalised

potential of the field of force.

According to the principle of equivalence it must also be

possible to specify a gravitational field by a set of values of

the 0's. It will be our object to find the differential equations

satisfied by the g's representing a gravitational field. These

differential equations for the generalised potential will express

the law of gravitation, just as the Newtonian, law is expressed

by y29=0.
The double aspect of these coefficients, grtl , &c., should be

noted. (1) They express the metrical properties of the co-

ordinates. This'is the official standpoint of the principle of

relativity, which scarcely recognises the term
"
force."

(2) They express the potentials of a field of force.

This is

*

the unofficial interpretation which we use when

we want to translate our results in terms of more familiar

conceptions.

Although we deny absolute space, in the sense that we regard

all space-time frameworks in which we can locate natural

phenomena as on the same footing, yet we admit that space

the whole group of possible spaces may have some absolute

properties. It may, for instance, be homaloidal or non-

homaloidal. Whatever the co-ordinates, space near attracting

matter is non-homaloidal, space at an infinite distance from

matter is homaloidal. You cannot use the same co-ordinates

for describing both kinds of space, any more than you can use

rectangular co-ordinates on the surface of a sphere ; that is,

in fact, the geometrical interpretation of the difference.

Homaloidal space-time may be regarded as a four-dimensional

plane drawn in a continuum of five dimensions ;
whereas

non-homaloidal space-time must be regarded as a curved

surface in five dimensions.* These considerations apply, of

course, to measured space ;
we can always throw

the^
blame

on our measuring rods, and apply theoretical corrections to

* We shall see (44) that m a region, not containing matter, but traversed

by a gravitational field due to matter, the Gaussian or total curvature is

zero ; but such a space-time does not correspond to a plane m five dimen-

sions, or to any surface whioh can be developed into a plane. The space-

time m a gravitational field has an essential curvature m the ordinary

sense, although it happens that the particular invariant technically called
"
the'curvature

" vanishes. In three-dimensional space a surface with zero

Gaussian curvature can always be developed into a plane ; but this is not

true for space of higher dimensions, so that the three-dimensional analogy

is liable to lead to misimderstanding.
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OUT measures so as to make them agree with any kind of apace
we please.

It is not necessary, and indeed it is not possible, to draw a

sharp distinction between the portions of the ^'s arising from
the choice of co-ordinates and the portions arising from the

gravitation of matter. We have seen that, when there is no
field of force, ds* has the form (15-1), so that the #'s have thelooo0-10000-100001 . . . . (16-3)

These values then express that there is no field of force,
and in the absence of a gravitational field produced by matter
it is possible to take our co-ordinates (Galilean co-ordinates)
so that the values (16-3) hold everywhere. We naturally
regard such co-ordinates as fundamental ; and, if we choose

any other co-ordinates, the deviations of the /s from this

peculiarly simple set of values are regarded as due to the
distortion of the space-time chosen But by 14; when
gravitating matter is in the neighbourhood, there is no possi-
bility of choosing co-ordinates, so that the values (16-3) hold
everywhere, and there is no criterion for selecting any one of
the possible systems of co-ordinates as more fundamental than
the others.

*

Accordingly we shall henceforth apply the term
"
gravita-

tional field
"
to the whole field of force given by the #'s, what-

ever its origin. In the particular case when no part of it is

due to the gravitation of matter, we shall say there is no
permanent gravitational field.

Just as Galilean co-ordinates are defined by the values (16-3)
of the y's, so any other co-ordinates must be defined analytically
by specifying the j's as functions of xv xz, x 3y cc4, or what
comes to the same thing by giving the expression for cfe

2
.

For example, if in Ijwo dimensions dfP=dxI*+xI*dx, the
co-ordmates axe recognised as plane polar co-ordinates with

* Thus if we say
"
take rectangular axes with the sun as origin

" the
statement is ambiguous Unaccepted rectangular axes imply that & ia
of the form (15-1) no other means of defining them having yet been given.
Owing to the sun s gravitation there is no system of co-ordinates for which
this is true, and several different systems present rival claims to be regardedas the best approximation possible. The di fficulty does not arise if we onlyhave to consider an infinitesimal region of space ; in that case the co-ordinates
(giving natural measure ") are defined without ambiguity.
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a^r, x2=6 ;
if ds^^dx^+cos^dx^, the co-ordinates are

latitude (a^) and longitude (a? 2) on a sphere. We might take

for the 10 gf's perfectly arbitrary functions of x
l3 x 2 ,

o?3 ,
x A9

and so obtain a ten-fold infinity of mathematically conceivable

systems of co-ordinates. But this would include many systems
of co-ordinates which describe kinds of space-time not occurring
in Nature. In any particular problem our choice is restricted

to a four-fold infinity, viz., if x^ o?2 , x& #4 is a possible system,
then four arbitrary functions of xv x2,

x 39 x will form a possible

system. In some other problem there will be an entirely
different group of possible systems ; the space-times in the

two problems have thus certain absolute properties which are

irreconcilable, and we interpret this physically by saying that

the permanent gravitational field is different in the two cases.

Further, taking all possible distributions of permanent gravi-
tational field which can occur in space (in the neighbourhood
of, but not containing, matter), we do not exhaust the con-

ceivable variety of functions expressing the gr's. There is a

general limitation on the </'s imposed, not by mathematics,
but by Nature which is expressed by the differential equa-
tions of the law of gravitation which we are about to seek*

The law of gravitation, in fact, expresses certain absolute

properties common to all the measured space-times that can

under any conditions occur in Nature.

The law of gravitation, or general relation connecting the 0's,

must hold for all observed values of the #'s. iSince the f/'s

define the system of co-ordinates used, this means that the

relation must hold for all possible systems of co-ordinates.

If new co-ordinates are chosen, we find new values of the gr's

as in (15*5) ; and the differential equations between the new

0's and new co-ordinates must be the same as between the old

<7*s and old co-ordinates. In mathematical language the equa-
tions must be covariant.

There is a resemblance between this statement and the

statement of 12 which is somewhat deceptive. We there

found that observable events have no reference to any parti-
cular system of co-ordinates, and therefore all laws of nature

can be expressed in a form independent of the co-ordinates.

But this alone does not allow us to deduce tlie covariance of

the equations satisfied by the gravitation-potentials. Without
the principle of equivalence we could no doubt define the field

by certain potentials cp^ <p 2> 93, . . . . which satisfy differential

equations independent of the choice of co-ordinates. But that



26 RELATIVITY THEORY OF GRAVITATION.

conveys no information of value, unless we are told how to

find
<PJ, <pa',

.... in the co-ordinates a, a?,, a?;,
a?4

'
from the

values <p l5 9 2 , .... in the co-ordinates x ly # 2 ,
#3 ,

#4. The

statement in 12 tells us nothing about that. It is the prin-

ciple of equivalence which, by identifying the potentials with

the #'s for which the method of transformation is known,

supplies the missing link

17. The Newtonian law of gravitation, V
2

#44=^>
does not

fulfil the condition of covanance nor does any modification of

it, which immediately suggests itself. We have, therefore, to

seek a new law guided by the condition that it must be ex-

pressed by a covariant set of equations between the y's. It

will be found in Chapter IV. that the choice is so restricted

as to leave little doubt as to what the new law must be.

If we write the required equations in the form

^=0, y 2=0, T3=0, Ac.,

the left-hand sides, T 13
T 2 ,

T3, may be regarded as components
of a kind of generalised vector, only the number of components
is not, as in a vector, restricted to 4.

The covariance of the equations means that, if all the com-

ponents vanish in one system, of co-ordinates, they must vanish

in all systems. To secure this, T 19 T& . . . . must obey a

linear law of transformation ;
thus

where the coefficients are functions of the co-ordinates de-

pending on the transformation. Generalised vectors of this

kind are called tensors ; and it will be necessary for us to

study their properties in the next chapter, in order to select

the one which can represent the new law of gravitation.

We see that if an equation is known to be a tensor-equation,

it is sufficient to prove it for one particular system of co-

ordinates ; it will then automatically hold in any other system
obtainable by a mathematical transformation,

The more general purpose of the tensor theory is this :

If we are given a set of equations expressing some physical
law in the usual co-ordinates, we may be able to recognise

these as the degenerate form for Galilean co-ordinates of some

tensor equation. Expressed in teasor form, these equations
will then hold for all systems of co-ordinates that can be

derived by a mathematical transformation. Subject to the
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(Tie velocity of light being unity, a kilometie is also a unit of

time = a-obVoo" sec.) When, the clocks are correctly set and

viewed from A, the sum of the readings of any clock and the

division beside it is the same for all, since the scale-reading

gives the correction lor the time taken by light in travelling

to A. This is shown in Tig. 2, where the clock-readings are

given as though they were being viewed from A.

Now lay the scafe in line with the two events ; note the

clock and scale-reading, 1?
^

1? of the first event, and the

corresponding readings ^ 2 > ^ of tte second event ; then from

(11-1)

a^l.-^M''.--^)
1 .... (11-2)

If the scale had been set in motion in the direction AB9

<ra
-~

"i would have been diminished,, owing to the divisions

having advanced to meet the second event. But the clocks

would have been adjusted differently, because A is now

Fio. 2.

advancing to meet the light coming from any clock, and the

clock would appear too fast (by the above rule) if it were not

set back. There are other second-order corrections arising

from the contraction of the scale and change of rate of the

clocks owing to motion ; but the net result is a perfect com-

pensation, and dsz determined from (11-2) must be invariant,

as already proved.
It is clear that the whole (restricted) principle of relativity

is summed up in this invariance of ds, and it is possible to

deduce the equation of transformation (4 2) and our other

previous results by taking this as postulate.
When 8s refers to the interval between two events in the

Itistory of a particular particle it has a special interpretation
which deserves notice. If we choose axes moving with the

particle, dx9 dy> <5z==0, so that ds=*dt. Accordinglythe variable

s is called the
"
proper-time," i.e., the time measured by a

clock attached to the particle,

12. Up to the present we have discussed a particular type
of transformation of co-ordinates, viz., that corresponding to
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But there is more than one way of correcting tte measures
to fit Euclidean space, so that we are not really justified in

making precise statements as to the behaviour of our clocks
and measuring rods. It is better not to discuss their defects,
but to accept the measures and examine the properties of the

corresponding non-Euclidean space and time.
If we draw a circle with a heavy particle near the centre,

the ratio of the measured circumference to the measured
diameter will be a little less than rr

> owing to the factor y~l
affecting radial measures. It is thus like a circle-drawn on a
sphere, for which the circumference is less than ^ times the
diameter if we measure along the surface of the sphere. We
may imagine space pervaded by a gravitational field to have
a curvature in some purely mathematical fifth dimension.

If we draw the elliptic orbit of a planet, slit it along a radius
and try to fold it round our curved space there will evidently
be some overlap. For example, take a cone with the sun as
apex as roughly representing the curved space. Starting with
the radius vector SP, the Euclidean space will fold completely
round the cone and overlap to the extent PSP\ Thus the
corresponding radius advances through an angle PSP' each
revolution (Fig. 3). This shows one reason for the advance of

perihelion of a planet, which is one of the most important
effects predicted by the new theory ; but it is not the whole
explanation.
The reader may not unnaturally suspect that there is an

admixture of metaphysics in a theory which thus reduces the
gravitational field to a modification of the metrical properties
of space and time. This suspicion, however, is a complete
misapprehension, due to the confusion of space, as we have
defined it, with some transcendental and philosophical space.
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There is nothing metaphysical in the statement that imder
certain circumstances the measured circumference of a circle

is less than n times the measured diameter ; it is purely a

matter for experiment. We have simply been studying the

way in which physical measures of length and time fit together

just as Maxwell's equations describe how electrical and

magnetic forces fit together. The trouble is that we have
inherited a preconceived idea of the way in which measures,
if

"
true/

9

ought to fit. But the relativity standpoint is that

we do not know, and do not care, whether the measures under
discussion are

"
true

"
or not ; and we certainly ought not to

be accused of metaphysical speculation, since we confine our-

selves to the geometry of measures which are strictly practical,
if not strictly practicable. It is desirable to insist that we do
not attribute any causative properties to these distortions of

measured space and time. To hold that a property of our

measuring-rods is the cause of gravitation would be as absurd
as to hold that the fall of the barometer is the cause of the

storm.



CHAPTER III.

THE THEORY OF TENSORS.

19. We consider transformations from one system of co-

ordinates # 1? o: 2,
#3, #4 to another system a^, 2,', x, x**

(a) Notation.

The formula (15*3) for d$2
may be written

4 4

x,, (g v=g^) . . . (19-11)

In the following work we shall omit the signs of summation,

adopting the convention that, whenever a literal suffix appears
twice in a term, the term is to be summed for values of the

suffix 1, 2, 3, 4. If a suffix appears once only, no summation
is indicated. Thus we shall write (19*11)

ds^^g^dx^dxy ...... (19*12)

In rare cases it may be necessary to write a term containing
a suffix twice which is not to be summed ; these cases will

always be specially indicated. In general, however, this con-
vention anticipates our desires, and actually gives a kind of

momentum in the right direction to the analysis.
As a rule of manipulation it may be noticed that any suffix

appearing twice is a dummy, and can be changed freely to any
other suffix not occurring in the same term.

(6) Covariant and Contravariant Vectors.

The vector (dx ly dx& dx%, dx) is transformed according to
the equations

or, with our convention as to notation
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Any vector transformed according to this law is called a

contravanant vector : its character is denoted by the notation

JM (ji*=l, 2, 3, 4). The law may be written

(19-21)

where, as already explained, summation is indicated by the

double appearance of the dummy <r.

If 9 is a scalar (i.e., invariant) lunction of position the vector

-- ~~- 2- -2- is transformed according to the law

^9. i 3#2 d<? . d^a ^9 . 9as4 _9q

A vector transformed according to this law is called a

covanant vector, denoted by A^ The law may be written

4;= 4, ...... (19-22)
0#>

A covariant vector is not necessarily the gradient of a scalar.

The customary geometrical conception of a vector does not

reveal the distinction between the two classes of contravariant

and covariant vectors. We usually represent any directed

quantity by a straight line, which should strictly correspond

only to" a contravariant vector. The other class of directed

quantities is more properly represented by the reciprocal of a

straight line ;
but in elementary applications, when we are

thinking in terms of rectangular co-ordinates, there is no need

to make this distinction. Consider, however, a fluid with a

velocity potential. With rectangular co-ordinates the velocity
is equal to the gradient of the velocity potential. Both these

are directed quantities, i.e., vectors, and the vector relation

extends to their rectangular components ; thus

dx_ 89 dy_ 9<p dz_ 9<p

di^fo9

dt~"<h/ dt~~dz~

But if we use oblique axes or curvilinear co-ordinates, the

relation no longer holds. E.g., it is not true that in polar co-

ordinates dQ/dt=dq>/dd ;
the actual relation is rd6/dt=d(pfrd6.

This is because the two vectors are of opposite natures, the

first being contravariant and the second covariant. K they
tad been of the same nature the relation must have held for

all systems, of co-ordinates. Clearly, since in our work we
consider all systems of co-ordinates as on the same footing,
*e have to distinguish carefully between the two types.

D2
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realise at once that the equation d^/afc==d<p/9a^, being an

equation between vectors of opposite kinds, is impossible as a

general equation for all systems of co-ordinates, i.e., it is not

a covariant equation.

(c) Tensors of Higher Rank.

We can denote by A^ a quantity having 16 components,
obtained by giving different numerical values to ju and ?.

Similarly, A^ has 64 components. By a generalisation of

(19-21) and (19-22) we classify quantities of this kind according
to their transformation laws, viz.,

Covariant tensors J^---^^^ . . . . (19-31)

Contravariant tensors A^v

=^-~-^A
ar

. . . , (19-32)

Mixed tensors ^'^^tix^* (
19 *33

)

and similarly for tensors of the third and higher rank. These

equations of transformation are linear, so that the conditions

of 17 are satisfied. Also it is not difficult to see that there

can be no other linear types of transformation-laws having the

necessarytransitive property. For example, consider a vector

Ar, Introducing a third set of co-ordinates x, we have

^ ,

But

showing that the result is the same whether the transformation
is performed in two steps or directly. Other suggested types
of transformation law have not this necessary property. Thus
all possible types of tensors are included.

Evidently the sum of two tensors of the same character is a
tensor.

The product of two tensors is a tensor, and its character is

the sum of the characters of the component tensors. For

example, consider the product A^B^w have by (19-31) and

He...
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showing that the law of transioimation is that of a tensor of

the fourth rank having the character denoted by C^.
The product of two vectors is a tensor of the second rank,

but a tensor of the second rank is not necessarily the product
of two vectors.

A familiar example of a tensor of the second rank is afforded

by the stresses in a solid or viscous fluid. The component of

stress denoted by pxy represents the traction In the ^-direction

exerted across an interface perpendicular to the ^-direction.

Bach component involves a specification of two directions.

(d) Inner MuU^phcat^on.
If we multiply A^ by B*, the repetition of the suffix involves

summation of the resulting products. The result is called the

inner product in contrast to the ordinary or outer product A^B
V
.

The notation at once shows whether the product is inner or

outer in any formula.

From a mixed tensor such asAr

^vcr
we canform a

"
contracted

"

tensor A^v<r , which is of the second rank with suffixes ft and v

(since
v is now a dummy suffix). To show that it is a tensor

we have as in (19*34)

But ^^=5-^=0 or 1, according as y / d or y=d.
ox* o%6 ox&

Hence g^U^+0+0+^r

Substituting in (19*41) we see that A^vff follows the law of

transformation (19-31) and is therefore a covariant tensor.

An expression such as A^ is not a tensor, and no interest

attaches to it.

By a similar argument we see that A%3
A* v are invariant,

and consequently A^B^ is an invariant. An invariant, or

scalar, corresponds to a tensor of zero rank.

(e) Criterion for the Tensor Character.

To prove that a given quantity is a tensor, we either find

directly its equations of transformation, or we express it as

the sum or product of other tensors, or, under certain re-

strictions, as the quotient of two tensors according to the

following theorem : A quantity, which on inner multiplication

by any covariant (alternatively, by any contravariant) vector

always gives a tensor, is itself a tensor.
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To prove this, suppose that A^VBV
is a covariant vector for

any choice of the contravariant vector Bv
. Then by (19-22)

But by (19*21) applied to the inverse transformation from
accented to unaccented letters,

*-',*'

Since B'" is arbitrary, the quantity in the bracket must

vanish, showing that A^v is a covariant tensor (19-31). The

proof can evidently be extended to tensors of any character.

20, (a) The Fundamental Tensor.

Since g^dx^dx^ds*, which is an invariant or tensor of zero

order, and dxv is an arbitrary eontravariant vector, it follows

from the last theorem that g^dx^ is a covariant tensor of

the first rank. Repeating the argument, since dx^ is an

arbitrary eontravariant vector, g^v must be a covariant tensor

of the second rank.

The determinant formed with the elements g^v is called the

fundamental determinant and is denoted by g.

We define g^ to be the minor of g^y divided by g.

From this definition g^g^ reproduces the fundamental
determinant divided by itseli, when o-=v, and gives a deter-

minant with two rows identical, when <r*'v. We write

gZ^g^g^l when o- - v \

=0 when <H=*
* *

Hence if Av
is an arbitrary eontravariant vector

$^=^+0+0+0=^ .... (20-15)

This shows by the theorem of 19 (e) that g is a tensor,

and it evidently is a mixed tensor as the notation has antici-

pated.*

* In applying the theorem of 19(e), the appropriate notation for the
tensor* (expressing its oovariant or eontravariant character) is found by
inspection. An equation such as (20*15) must have the suffixes on both
uidfis In corresponding positions ; the upper and lower <r on the left cancel
one anoiheil (7/. equations (20*21), (20-22), (20-23). It must be noted,
however, tha& in an expression such as g^wdx^, dx^ is contravariant, so thai
the second n is really an tipper suffix.
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(Similarly, since g^A
a

is a covariant vector, arbitrary on

account of the free choice of A* 9 and fg*A*A^ g* must

be a contravariant tensor.

We Lave thus the three fundamental tensors

SU yl, and $T,

of covariant, mixed and contravariant characters.

It will be seen from (20-15) that gl acts as a substitution

operator substituting v for <r in the operand.

(6) Associated Tensors.

With any covariant tensor AMP we can associate

a mixed tensor Al ^gv*A^ (20-21)

a cent ravarianfc tensor A^q^g^A^g^Al- . . (20-22)

a scalar A=g"A^AZ .... (20-23)

(c) The Jacobian.-

Denoting the determinant formed with elements a^ by

la^l, the Jaeobian of the transformation is

since in our notation the ordinary rule for multiplying deter-

minants is |Xfi \ X |
BAy 1

=
\ A^B y I (left side not summed).

Hence (f^Jstl*

It d'c is an element of four-dimensional volume, we have

_
sottat V-gr.it^V-j'.^ .... (20-3)

We shall always assume that the Jaeobian is finite, i.e.,

that the transformation has no singularity in the region con-

rictered. The determinant g is always negative for real trans-
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21. Auxiliary Formula for the Second Derivatives.

We introduce certain quantities known as Christoffers

3-index symbols, viz.,

,91 in
' (2M1)

We have
{/*v,

Jl} -^ [JM^, a] .... (21-13)

and the reciprocal relation follows by (20-1)

L*v, i]=ftu {/^v, a} .... (21-14)

Since ^ is a covariant tensor

, 9a?g fa?
$w o^.' o/?^'

Heace
S^ 8x"

In the second term in the bracket we have interchanged
a and ft, which is legitimate since they are dummies ; in the
last term we have used

_3__dxy 8

Similarly,
&4~a**V

where in the last term we have made some interchanges of

the dummy suffixes a, /?, y.

Adding these two equations and subtracting (21-15)' we have

Multiply through by ff^
p~

/3 we have

(19-82)

using (20-1) and (2143).
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This somewhat complicated formula for d*x,/fa'd3 in

terms of the first derivatives is needed for the developments
in the next paragraph.

22. Covariant Differentiation.

If we differentiate a scalar quantity we obtain a tensor (a

covariant vector) ; but if we differentiate a tensor of the first

or higher rank the result is not a tensor. We can, however,
obtain a tensor which plays the part of a derivative by a more

general process. The process is particularly useful in gene-

ralising results which have been obtained in Gfalilean co-

ordinates, since the simple derivative is the degenerate form
for Galilean co-ordinates of the covariant derivative here
considered.

If Ap is a covariant vector, then by (19-22)

Whence, differentiating,

... _
, .._._ _ ,_

7/1
nX c*Xt nffi nX flff* nT

Substitute for d*x<,/dxdx; by (21-2) ; we have

-$ fa> {<*$><*}A* (22-1)

But A ff*r-;=Ap by (19-22) ; and in the last term the dummies
/*

a, & <r may be replaced by or, r, p. Hence if we write

A 3A
A^^^-f {pv9 p}Ap .... (22-2)

(jjjy

W6 have 4^=^7 -4^.,.,

showing that A^v is a tensor. This is called the covariant d&
rivative of A^

If Axy B^ are covariant vectors, AXv> B^v their covariant de-

rivatives, then A

is the sum of two tensors, and is therefore a tensor. Sub-

stituting from (22-2) this tensor becomes

9 . .(22-3)
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which is called tlie derivative of the tensor AXB^ It is not

difficult to show that any tensor of the second rank can be

expressed as the sum. of products of four pairs of vectors, and
hence (22*3) can be generalised, giving for the covariant

derivative of A^

{^e}A,e . . (224)

In a somewhat similar manner formulae for the covariant

derivatives of contravariant and mixed tensors can be ob-
B

tained, viz.,

(225)

. . (22-6)

- (227)

The unsymmetrical behaviour of covariant and contra-

variant indices in these formula should be noticed. In all

cases differentiation adds one unit of covariant character.

When the #
5

s have Galilean values (or, more generally, are

constants) the Christoffel symbols vanish, and these derivatives

reduce in all cases to the ordinary differential coefficients.

23. The R^emann-Christoffel Tensor.

Let us form the second covariant derivative of the vectorA^
that is to say in formula (22-4) we give the tensor A^ the
value (22-2).

1

+ {v<r, 6} {/*, pj

The first five terms are unaltered by interchanging
v and <r,

i.e, 9 by changing the order of differentiation. (We can write

e for p in the second term.) Hence
A _ A _

"-,u,vir
z-l/Mn

, 4 {", Pi
~

(I*, } {" P}+- {^, ?}
--

(I*, p}
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The left side is a tensor, and Ap is an arbitrary covariant

yector ; therefore, by 19 (e) the quantity in the bracket is a

tensor. This is called the Eiemann-ChristofM tensor, and is

denoted by

24. Conditions for Vanishing of the Riemann-Christoffel
Tensor.

Prom the foregoing definition the primary meaning of the

vanishing of this tensor is that the order of differentiation is

indifferent (as in the ordinary differentiation). But the tensor

has an even more important property. It will be seen on

inspection that it vanishes when the y's have their constant

Galilean values.* But, since it is a tensor, it must also vanish

in any other system of co-ordinates derivable by a mathe-

matical transformation. Thus the equation

5^=0, ...... (24-1)

is a necessary condition that with suitable choice of co-ordinates

d$2 can be reduced to the form

. . . (24-2)

In other words it is a necessary condition for the absence of

a permanent gravitational field.

It can be shown that the condition is also sufficient.

Equation (24-1) contains 96 apparently different equations,

since, owing to the antisymmetry in or and v, there are only 6

combinations of <r and v to be combined with 16 combinations

of p and p. But these are not all independent, and the

number can be reduced to 20, which can be shown to be the

number of conditions required for the transformation to the

form (24-2) to be possible.
The reduction is effected by writing

so that BL,=g(tAkn>) by (20-1)

Equation (24-1) is thus equivalent to

(/iT(Tv)=0,

and vice versa.

* The Christoffel symbols vanish when the #'s are constants.



40 RELATIVITY THEORY OF GRAVITATION.

On working out the value of (pr<rv) it is seen by inspection
that the following additional relations exist :

which reduce the number of independent conditions to 20.

25. To sum up what has been accomplished in this chapter,
we have discussed the theory of tensors expressions which
have the property that a linear relation between tensors of

the same character will hold in all systems of co-ordinates if it

holds in one system. We have shown that the tensor-property
can be established either by determining the law of transforma-

tion, or exhibiting the quantity as a sum or product of other

tensors, or, under certain restrictions, as the quotient of tensors.

We have found formulae for tensors which play the part of

derivatives. Finally, we have found the necessary and
sufficient relation between the g^v> which must be satisfied in

all systems of co-ordinates, when there is no permanent
gravitational field. $

This last result is an important step towards obtaining the
law of gravitation. Any set of values of the #'s which satisfy

(24-1) will correspond to a possible set of co-ordinates which
can be used for describing space not containing a permanent
gravitational field. Hence if (24-1) is satisfied the #'s are such
as can occur in Nature, and are accordingly not inconsistent
with the law of gravitation. The required equations of the
law of gravitation must, therefore, include the vanishing of

the Riemann-Christoffel tensor as a special case.



CHAPTER IV.

EINSTEIN'S LAW OP GRAVITATION.

26. We liave seen in 16 that the law of gravitation must
be expressed as a set of differential equations satisfied by the

^'s. We have further found the equations (24 1) which are

satisfied in the absence of (i.e., at an infinite distance from)

attracting matter. Clearly the general equations between the

g's must be covariant equations automatically satisfied when
(24-1) is satisfied ; but they must be less stringent, so as to

admit of permanent gravitational fields, which, we know, do
not satisfy (24-1).

The simplest set of equations that suggests itself is

GU=5/,p
==0 ...... (26-1)

&,,, being the contracted Riemaiin-ChristofEel tensor, formed

by setting 0*= p and summing. It is evidently satisfied when
all components of the Riemann-Christoffel tensor vanish ; and
it is a less stringent condition.

The equations G> are taken by Einstein for the Law
of Gravitation. Written in full they are, by (23)

(26-2)
The last two terms can be simplified. We have '

the other terms cancelling on summation.

Hence, since g
pe
g is the minor of the element gp9 in the

determinant g,
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Equation (26-2) thus becomes

=0 . (26-3)

The equation is symmetrical in ^ and V, and therefore

represents 10 different equations. Actually there exist four

identical relations between these, so that the number of in-

dependent equations is reduced to six (see 39).

The selection of this law of gravitation is not so arbitrary
as it might appear. There is no other set of equations corre-

sponding to a tensor of the second rank containing only first

and second derivatives of the g^ and linear in the second

derivatives. Moreover, there is no other way of building up a

tensor of lower rank out of the components of -B
v<r
.*

Having regard to the summations involved in (26*3) it will

be seen that the application of the new law of gravitation
must involve a considerable amount of calculation. There are

first to be calculated 40 different Christoffel symbols, each of

which is the sum of 12 terms. Then each of the 10 equations
contains 25 terms chiefly products or derivatives of the

Christoffel symbols. Finally the partial differential equations
have to be solved. It will probably be admitted that it is

worth while to find out whether this suggested law of gravita-
tion will agree with observation before resorting to something
more complicated.

27. We are now in a position to define the Principle of

Equivalence more precisely. The difference between a per-
manent gravitational field and an artificial one arising from a

transformation of Galilean co-ordinates is that in the latter

case (24-1) is satisfied, whereas in the former the less stringent
condition (26-1) is satisfied. These equations determine the
second differential coefficients of the g^ so that we can make
the natural and artificial fields correspond as far as first

differential coefficients, but not in the second differential co-

efficients. We shall therefore state the Principle of Equiva-
lence as follows :

* The tensor S^V<T vanishes identically. Other suggestions such as

gwjfpvff merely give a set of equations equivalent to (26-1). The single

equation <p"0/w=0 would, obviously be insufficient to determine the gravita-

tional field-
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All laws, relating to phenomena in a geometrical field of

force, which depend on the g's and their -first derivatives, will

also hold in a permanent gravitational field. Laws which.

depend oa the second derivatives of the g's will not necessarily

apply.
It must be remembered that we give no proof of this ; it

is merely an explicit statement of our assumptions. It would
be quite consistent with the general idea of relativity if the

true expression of such laws involved the Riemann-ChristoSel

tensor, which vanishes in the artificial field, and would have
to be replaced before the equations were applied to the

gravitational field. But if we were to admit that, the principle
of equivalence would become absolutely useless.

CHE GRAVITATIONAL FIELD OF A PARTICLE*

28. We have seen that the gravitational-potentials satisfy
the equations (26*3)

. (28-1)

We shall now find a solution of these equations corresponding
to the field of a particle at rest at the origin of space-co-
ordinates. We choose polar co-ordinates, vi#.,

In making this statement we are departing somewhat from
the standpoint of general relativity. Strictly speaking, we can

only define a system of co-ordinates by the form of the

corresponding expression for ds*, that is by the gravitatioL-

potentials. So that to ^specify the co-ordinates that are used
involves solving the problem. Further, we have at present no

knowledge of a particle of matter, except that it must be a

point where the equations (28-1), which hold at points outside

matter, break down ; we can only distinguish a particle from
other mathematically possible singularities, such as doublets,

by the symmetry of the resulting field. Thus the logical
course is to find a solution, and afterwards discuss what
distribution of matter and what system of co-ordinates it

represents. We shall, however, find it more profitable to

accept the guidance of our current approximate ideas in order

to arrive at the required solution inductively.
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The line-element ds can be assumed to be of the form

evdt* . (28-21)

where h, //3
v are functions of r only.

The omission of the product terms, drdd, drd<p, dddy, is

justified by the symmetry of polar co-ordinates ;
the omission

of drdt, d6dt, dydt involves the symmetry of a static field with

respect to past and future time. If the latter products were

present we should interpret the co-ordinates as changing with
the time.

A further simplification can be made by writing rV=r'2

and adopting r' as our new co-ordinate (dropping the accent).
The resulting change in dr2 is absorbed by taking a new L
Thus the coefficient e? is made to disappear and we have

ds*= -exdr* -rW -r*sin2
0dcp

2+ev
dt*. . (28-22)

Comparing (28 22) with (15 3), we have

0u=-^ 0r=-^ fe--r2sin2
0, gu=e . (28-31)

and SWO? wheno-=/=rT.

The determinant g reduces to its leading diagonal, so that

_
?=^+>'r

4sin2
0, ..... (2832)

and sr=l/9~ ....... (28-33)

We can now calculate the three-index symbols (21-12)

Since the ^'s vanish except when the two suffixes agree,
the summation disappears and we have

If <r, T, p are unequal we get the following possible cases :

>
. (28-4)

{<rr, p}=0.

None of the above expressions are to be summed.
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Whence by (28 31), denoting differentiation with respect to

r by accents, we obtain

{11, 1} =P'
{12, 2}=l/r
{l3, 3}=l/r
il4, 4} =$*'
^22, l}=-r- x

}
. (285)

{23, 3} = cot e

{33, 1} = -r sin2 0<rx

{33, 2} = - sin 6 cos 9

{44, i} =i^-v
The remaining 31 Christoffel symbols are zero. It should

be noted that {21, 2} is the same as {12, 2} , etc.

It is now not difficult to obtain the equations of the field.

To assist the reader in carrying through the substitutions, we
shall write out in full the equations (28-1) omitting the terms

(223 in number), which obviously vanish. The following come

respectively from G ll9 ?22 ,
6?

33, <T44=0 :

-f- {11, 4} + {11, 1} (11, 1} + {12, 2} {12, 2} + {13, 3} {13, 3}
uf

+ {14, 4} {14, 4}+ ,-ilog V-g- ill, 1} r-log V -g=0
(JT OT

-I- {22, 1} +2 {22, 1} {12, 2}+ {23, 3} {23, 3} +|dog V^g
Qf 7t/

-
{22, 1} ^log V~gr=0

ff>

-j-r
{33, 1} -^ {33, 2} +2 {33, 1} {13, 3} +2 {33, 2} {23, 3}

--
r
{44, l}+2 [44, 1} {14, 4}

-
{44, 1} JUog V^g=0.

Of the remaining equations, <?12=0 gives

{13, 3} {23, 3} - {12, 2} ^
0"

which disappears when the values of the symbols are substi-

tuted ; and in the others there are no surviving terms.

E
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Substituting from (28-5) and (28 32) the four equations give

immediately

_____- _ -- -,

*-2 cos2

These reduce to

_t-iw,/_ i'\\ i ^=fk

. (28-6)

From tlie first and last equations /l

/= /, and since both

1 and v must tend to zero at infinity 1= v. The second and

third equations (which are identical) then give

Set e"=y, then

Whence

where 2m is a constant of integration, tn will later be identified

with the mass of the particle in gravitational units. This

solution satisfies the first and fourth equations, and, therefore,

substituting in (28*22), we have as a possible expression for

the line-element

WW-~f2
sin2 8dy*+ydt*, . (28*8)

=l 2m/r.

It will be seen that the measured space around a particle is

not Euclidean. Any actual measurement with our clock-scale

gives the invariant quantity ds. If we lay our measuring-rod

transversely, ds^rdO, so that our transverse measures are
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correct in this system of co-ordinates ; but if we lay it radially,

dsy^dr, and the measures need to be multiplied by y* to

give dr. Titus, referring our results to Euclidean space, we

may say that a standard measuring rod contracts when turned
from the transverse to the radial direction.

We could, of course, decide to treat the radial measures as

correct, and apply corrections to the transverse measures.

This amounts to substituting &r
f
for y~*dr in (28-8), and using

r' as the radial co-ordinate. It is impossible to say which
form of (28-8) corresponds to our ordinary polar co-ordinates,
since we have never hitherto had to pay attention to the

ambiguity.
The possibility of using any function of r, instead of r, for

the distance is connected with the fact that Einstein's equations
amount to only 6 independent relations between the 10 #

?

s

Consequently, quite apart from boundary conditions, there is

a large amount of arbitrariness in choice of ^'s, ^.e., of co-

ordinates. The reader may meet elsewhere with different

expressions for the line-element due to a particle. The one

adopted here was first given by Schwar^schild

For some purposes the following analogy is helpful. Instead

of considering continuous space-time, consider that funda-

mentally we are dealing with an aggregate of points. With
Galilean co-ordinates x, y, z, t\/ 1 the points are uniformly

packed. Any measure that we make is really a counting of

points, and a particle always moves so as to pass through the

fewest possible points between any two positions on its path.

Ajay mathematical transformation of these co-ordinates dis-

turbs, without disordering, the distribution of the points in

space ; but it is meaningless so long as we consider only the

points and not the arbitrary continuous space we place them
in. In a gravitational field the points are disordered according
to some definite law. We can evidently re-arrange them so

that the number of points in the circumference of a circle is

less than n times the number in the diameter (a circle being a

geodesic on a hypersphere, which is a locus such that the

minimum number of points between any point on it and a

fixed point called the centre is constant).
This representation, however, gives only imaginary time and

therefore imaginary motions. When extended to real motions

it becomes too complex to be of much help.
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THE CRUCIAL PHENOMENA.

29. The Equations of Mot^on of a Particlem the Gravitational

Field.

dx
Denote the contravariant vector ^ by A*. Then by (22-5 )

its covariant derivative is

Multiply this by ^xa/Ss, we have

showing that the right-hand side is a contravariant vector.

Consider the equations

^+{a/U}%
3

f=0, (T=l,2,8,4), . . (29)

since the left-side is a vector, the equations will be satisfied

(or not) independently of the choice of co-ordinates. In
Galilean co-ordinates, the second term vanishes, and the

equations reduce to ^a^/c^Q, which are the equations of a

straight line. Equation (29) is thus the general equation oi

the locus which in Galilean co-ordinates becomes a straight
line.

The path of a particle in Galilean co-ordinates (i.e., under no

forces) is a straight line. The equations (29) are accordingly
the equations of motion of a particle referred to any axes,

provided there is no permanent gravitational field. Further,
since they contain only first derivatives of the y's, in accord-
ance with 27, these equations of motion will hold also when
there is a permanent gravitational field*

The equations must evidently correspond to the condition,

fd$ is stationary,
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and could have been deduced from it by tlie calculus of

variations. The path of a particle is a geodesic in all cases.

It should be noticed that /ds is not generally a mimmum.
30. Using the values (28-5) of Christoffel's symbols, the

equation of motion (29) for <r=2 becomes

,

2 dr & A /OA io\-----rssO. . (3042)
r ds ds

Choose co-ordinates so that the particle moves initially in

the plane 0=^/2 ; then d6fds=Q initially, and cos 0=0,
so that d*6jds

2 ==Q. The particle therefore continues to move
in this plane. The equations for cr=l 5 3, 4 are then

=<'18 >

AH ,fa dt
f

j^-v' =0 (30 '14)ds^ ds ds
v ;

Integrating (30-13) and (30-14), we have

r2^-^........ (30-21)

=ce-v ..... (30-22)
ds y

where h and c are constants of integration.

Instead of troubling to integrate (30*11), we can use (28-8),

which plays the part of an integral of energy, viz.,

From these three integrals,

/eZn, 2
. 9 /(Z

&}+*(
or substituting for y its value (28-7)

witk
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Compare these with the ordinary Newtonian equations fof

elliptic motion,

I- (304)

To make them correspond we must take c*=lm/a,
where a is the major semiaxis of the orbit. The term 2mk*/r*
represents a small additional effect not predicted by the

Newtonian theory. Further, the quantity m, introduced as a
constant of integration, is now identified as the mass of the

attracting particle measured in gravitational units. With

regard to the use of ds instead of dt in (30-3) 5 it must be
remembered that ds is the

"
proper time "

for the moving
particle, so it is permissible to take ds as corresponding to the
time in making a comparison with Newtonian dynamics.

Mass, time and distance are all ambiguously defined in

Newtonian dynamics, and in defining them for the present

theory we have some freedom of choice, provided that our
definition agrees with the Newtonian definition in the limiting
case of a vanishing field of force.

31. The Perihelion of Mercury.

The ratio mja or mfr is very small in all practical applica-
tions. If we take 1 kilometre as the unit of length and time

\ nOOQQQ
sec *

)'
^en *or *ke earth's orbit a=149. 10*, and

the angular velocity o>=6*64: . 10~13. Hence the mass of the

sun,
w=eo2a3=147 kilometres. . . . (31-1)

Thus for applications in the solar system m/r is of order 10~ 8

and it is easily seen that A2/r
3
is of the same order. Also the

difference between dt and ds is of order 10""%.
From (30-3) we have

(L J^*+*=&V3
d<?) ^r*

(C

or writing u=l/r.
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Differentiating with respect to
q>,

; .... (312)

Since A2u2
is of order 10" 8 we obtain an approximate solution

by neglecting 3wu
2

. This is

t*=5(l+eooB(9-tar)), . . . (31-3)
ti

as in Newtonian dynamics.
For a second approximation, we substitute this value of u

in tie small term Smu2
, and (31 2) becomes

w
,
3m3

. 6m3

(314)

Of tlie small additional terms tte only one wHch. can gwe
appreciable effects is the term in cos (9^), wticli is of the

proper period to produce a continually increasing effect by
resonance. It is well known that the particular integral of

is

u~^A<p sin 9.

Hence this term gives a part of n,

Adding this to (31-3) we have

cos (9-cr)+-9 6 sin

where to=9, and (5tnr)
2

is neglected.
ti>

Thus whilst the planet moves through one revolution, the

perihelion advances a fraction of a revolution equal to

dT3 3m2 3m _

where T is the period of the planet, and the velocity o lighi &

has been re-instated.
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For the four inner planets the numerical values of this

predicted motion of the perihelion are (per century) :

Mercury +42"-9 +S"-82
Venus 8-6 005
Earth 3-8 0-07
Mars 135 0-13

The value of ed is given because this corresponds to the

perturbation which can be measured. Clearly when e is

vanishingly small it is not possible to detect observationally
any change in the position of perihelion. The orbits of Venus
and the Earth are nearly circular so that the predicted effect

is too small to detect.

The following table gives the outstanding discrepancies
between the present theory and observation for efcr and de

(per century) with their probable errors. The seculai changes
8e are analogous to edtt ; and the two perturbations may be

regarded as the two rectangular components of a vector. In
the last column we give the outstanding discrepancies of edtz
on the Newtonian theory ; those of de are, of course, unaltered.

Einstein's Theory. Newtonian.
eto de edrz

Mercury -<T-58 ilT-29 ~0"-88 0-"33 +S"24
Venus -Oil 017 +0-21 0-21 -0 06
Earth 0-00 0-09 +0-02 0-07 +007
Mars +051+023 +029 0-18 +O64

It will be seen that the famous large discordance of the
perihelion of Mercury is removed by Einstein's theory. No
other charge of importance is made except a slight improve-
ment, for the perihelion of Mars. Of the eight residuals, four
exceed the probable error, and none exceed three times the
probable error, so that the agreement is very satisfactory.

It may be noticed that according to (314) the orbit is" not
exactly an ellipse, even apart from this progression of the apse.But this (unlike the motion of perihelion) has no observational
significance, and merely arises from our particular choice of
measurement of r. In any case the curve in non-Euclidean
space, which is to be described as an ellipse, must be a matter
o convention.
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It will be found (putting dr/ds~Q in (30-11)) that for a

circular orbit Kepler's third law is exactly fulfilled. This

again is not an observable fact. To compare it with obser-

vation we should have to consider the nature of the astro-

nomical observations from which the direct value of the axis

of the orbit is measured.

32. Deflection of a Ray of Light.

In the absence of a gravitational field the velocity of light
is unity, so that

dx\* /<%\
2

, fdz \ 2

__

dt)
+

\dt)
+

\dt)
- 1 '

Accordingly ds*=~-dxz -dy*-dz*+dt2^Q. . . (32-1)

Hence for the motion of light <fo=0, and by the principle of

equivalence this invariant equation must hold also in the

gravitational field,

It may be of interest to not.ce that for an observer travelling
with the light, dx=dy=^dz=0, so that <&=<Zs=0. Hence, if

man wishes to achieve immortality and eternal youth, all he

has to do is to cruise about space with the velocity of light,

He will return to the earth after what seems to him an instant

to find many centuries passed away.

Setting efo=0 in (28 8) we have (for motion in a plane)

Hence if v is the velocity of light in a direction making an

angle F with the radius vector,

v*(y
l cos 2 F+sin 2

F)=y,

whence *=y(l -(1-y) sin2
F)-* . . . , (32-3)

The velocity thus depends on the direction ;
but it must

be remembered that this co-ordinate velocity is not the velocity

found directly from measures at the point considered. When
we determine the velocity by measures made in a small region,

and use natural measure ^.e., g^ having the values (16-3) at

that point), the measured velocity is necessarily unity.

Since it is inconvenient to have the velocity of light varying
with direction, we shall slightly alter our co-ordinates. Set

r=r^m....... (324)

Then, neglecting squares of
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Substituting in (32 2)

so that in these co-ordinates,

t;=y=l-2w/r-fcl-2w/ri . . . (32-5)

i or all directions. We can now drop the suffix of rx .

By Huygens' principle the direction of the ray is determined

by the condition that the time between two points is stationary
for small variations of the path. The course of the ray will

therefore depend only on the variation of velocity, and will be
the same as in a Euclidean space filled with material of suitable

refractive index. The necessary refractive index ju is given by

We thus see that the gravitational field round a particle will

act like a converging lens.

The path of a ray through a medium stratified in concentric

spheres is given by ,* & J
/p=const....... (32-71)

where p is the perpendicular from the centre on the tangent.
By (32-6) we have to this order of approximation,

^=1+ ....... (32-72)

But (32*71) and (32*72) are the integrals of angular momen-
tum and energy for the Newtonian motion of a particle with

velocity p under the attraction of a mass 2m, the orbit being
a hyperbola of semi-axis 2m. This hyperbola, therefore, gives
the path of the light. If the distance from the focus to the
apse is R, we haver

., ,
,
R R

so that e=l+r~-=Q= -

,2m Zm

and the very small angle between the asymptotes
2 2 4m

Thus a ray of light travelling from QO to + oo
9 and passing

at a distance R from a particle of mass m experiences a total
deflection. .

a=
(32*8)"R
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For a star seen close to the limb of the sun, by (31 1)
m~l 47 kin.

.,
and J?=sun's radius=697,000 km. Hence

a-r-74.

It is curious to notice the occurrence of the factor 2 (mass=
2m) in the dynamical analogy. The deflection is twice what
we should obtain on the Newtonian theory for a particle

moving through the gravitational field with the velocity of

light. The path of a light ray is not a geodesic (or rather

the notion of a geodesic fails for mot on with the speed of

aght) ,
it s detemrned by stationary values of fdt instead

of fds.

It may also be noted that the velocity of light decreases as

the light fa
7

s to the attracting body.

O

FIG. 4.

33. It is hoped to test this prediction by observations of

stars near the limb of the sun during a total eclipse. If the

answer should be in the affirmative., the question will arise

whether this must be considered to confirm Einstein's law of

gravitation, or whether the deflection is sufficiently accounted

for by the simple hypothesis that the mass of the electro-

magnetic energy of light is subject to gravitation. The

unexpected factor 2 suggests that the deflection on Einstein's

theory will be double that which would result fromthe ordinary

electromagnetic theory. It is worth while to examine this

more closely.

Consider a tube of light of unit cross-section and length ds

(Fig. 4). Let the inclination of the ray to the axis of x be y-

Let g be the acceleration of the gravitational field directed

along Oy. Let E be the energy per unit volume ; and c be

the velocity of light, which on the electromagnetic theory ie

absolutely constant.
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Then the mass of electromagnetic energy E, according to

electromagnetic theory (or by (7-85)), is E/c*, so that if this

is subject to gravity the momentum generated in the tube in

unit time will be
P~
2 ds.g along Oy.

c

If the light is stopped by an absorbing screen placed

perpendicular to the ray the radiation-pressure is numerically

equal to E, showing that momentum E in the direction of

the ray passes across a section of the tube in unit time. ^Thus,

resolving in the a? and y directions, the conservation of

momentum gives

~5"(E cos ty) . ^$=0,

(L Cfj&

-=r(E sin w) . d$=^~ds,
ds^

^
c*

dE rt dw
Whence ^-cos w E sin w -~~ =0,

ds ds

.n *yj$

(334)

Eliminating dE/ds ,

jf-Si* (33
'

3)

The radius of curvature ds/dy is thus c*Jg cos y, which is

exactly the same as for a material particle moving with

velocity c in ordinary dynamics. This, as shown in the last

paragraph, is only half the deflection indicated by Einstein's

theory ;
and the experimental amount of the deflection should

thus provide a crucial test.

34. Displacement of Spectral Lines.

Consider an atom vibrating at any point of the gravitational
field. It is a natural clock which ought to give an invariant

measure of an interval ds ; that is to say, the interval <5$

corresponding to one vibration of the atom is always the same,

Let the atom be momentarily at rest in our system of co-

ordinates (though subject to the acceleration of the field) ;

then dx^dy~dz~Q, and by (15-3)
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If then dt and At' are the periods of two simiar atoms

v brating at different parts of the field where the potentials

are gu and g\& respectively,

dt
r...... (344)

K t refers to an atom vibrating in the photosphere of the sun*

_ 2m
I

and if If refers to an atom m a terrestrial laboratory, where

gr'44 is practically unity,

/!
~ =1-00000212 . , . (34-2)

dt -a

The solar atom thus vibrates more slowly, and its spectral

lines will be displaced towards the red. The amount is

equivalent to the Doppler displacement due to a velocity of

0-00000212, or in ordinary units 0-634 km. per sec. In the

part of the spectrum usually investigated the displacement is

about 0-008 tenth-metres.

The effect is of particular importance, because it has been

claimed that the existence of this displacement is disproved by
observations of the solar spectrum.* The difficulties of the

test are so great that we may perhaps suspend judgment ;

but it would be idle to deny the seriousness of this apparent

break-down of Einstein's theory. We shall therefore consider

the phenomenon from a more elementary point of view.

The phenomenon does not depend on the greater intensity

of the field on the sun, but on the potential ; and
^it

can

evidently occur in a uniform gravitational field. Consider an

observer in a uniform field of intensity g and two similar

atoms A i and A^ A^ being close to the observer and A z at a

distance a measured parallel to the field. The observer and

his atoms will, of course, be falling with the
Acceleration g.

Consider them all enclosed in a room which is also falling ;

then by the principle of equivalence cannot detect any

effect of the field, and he will therefore observe the same

period of vibration T for both atoms. Now refer the pheno-

mena to unaccelerated axes which coincide with the accelerated

axes at the instant $=0. The vibration emitted by A* at

the time *=0 will reach at the time =a (the velocity of

* C. E. St. John,
"
Astropfcysical Journal," Vol. 46, p. 249.
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light being unity), by which t me will iiave acquired a velocity

ga relative to tlie unaccelerated axes. He will, therefore,
correct Ms observation of the period of A 2 for tlie Doppler
effect of this velocity and deduce a true period T/(lga)
The period of A mil require no correction, and wil still be

given, as T. Since ga is the difference of potential between A l

and A % this agrees with (34 2)
As an example of a varying field, consider an observer O

at the origin of co-ordinates and an atom A at a distance r

in a field of centrifugal force of potential O^JcoV2
, the atom

being at rest at the time of emission of the light, but subject
to the acceleration of the field. Another way of stating the

problem is that there is no field of force, and the atom is

moving with velocity cor at right angles to the radius vector

at the time of emission of the light. But in that case the

period of vibration is by 4 increased in the ratio

by (16-2),

as compared with the stationary atom. This again agrees
with (34-1).

These verifications seem to leave little chance of evading
the conclusion that a displacement of the Fraunhofer lines is a

necessary and fundamental condition for the acceptance of

Einstein's theory ;
and that if it is really non-existent, under

conditions which strictly accord with those here postulated,
we should have to reject the whole theory constructed on the

principle of equivalence. Possibly a compromise might be
effected by supposing that gravitation is an attribute only of

matter in bulk and not of individual atoms ; but this would
involve a fundamental restatement of the whole theory, v

If the displacement of the solar lines were confirmed, it

would be the first experimental evidence that relativity holds
for quantum phenomena.



CHAPTEK VI.

THE GRAVITATION OF A CONTINUOUS

DISTRIBUTION OF MATTER.

35. la the problems occurring in Nature our data give, not

the distribution of the individual atoms, but the large-scale

average distribution of density. This transition from discrete

particles to the equivalent continuous medium occurs in the

Newtonian theory of attractions, and involves the replacement

of Laplace's equation y 2?^ by Poisson's equation y
2?=

4:7* p. We shall now find the corresponding modification of

Einstein's equations 6vr=0.

The equations 6vT=0 are not linear in the 0's, and conse-

quently the fields of two or more particles are not strictly

additive. But the deviations produced in the gr's by any
natural gravitational field are extremely small, so we shall

neglect the product terms and treat the fields as superposable.

It will be shown below that ultimately this approximation

does not produce any inaccuracy in the application we have in

view.

As in (324) we shall write r^r^m in (28-8) and neglect

(m/r)
2

. Then the line element in the field surrounding the

particle is

- (35-1)

We consider r x to be the actual radius vector, since the

mode of measurement is arbitrary to this extent. Converting

Into rectangular co-ordinates,

. (35-2)

The origin is now arbitrary, and r denotes the distance oi

the attracting particle from the element ds. The effects of

a number of particles being additive to our order of approxi-
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mation, we shall have for any number of particles at rest

relative to the axes,

da*=-(l+2Q)(daP+dy^te*)+(l-2Q)dt* . (35-3)

where O=Z(m/r)=the Newtonian potential.
Consider a point in the medium where the density is p,

and with as centre describe an infinitely small sphere. If

we neglect the material inside the sphere, the equations of the

gravitational field in free space will be satisfied at 0, i.e.,

6vT=0. Hence in calculating the values of 6>T at we need

only take account of the material inside the sphere. Accord-

ingly in (35-3) O refers to the potential inside an infinitely

small sphere of uniform density p

Since 9Q/9&, &c., vanish at 0, we have only to take account

of terms in (28-1) containing second derivatives of the #'s ;

and the calculation of & at is quite simple. We have

*^'V ^ ' s /~)/y
* ~ i 'J/7

}X^ OX2 0#3
22,7 f}2/ ^2/7

--^logV-^ . (354)

omitting 33 terms which vanish or cancel.

A 1 J^\ _ -jj^ ^_- "1
-y -^ ^ ^ ___ "I /Q K K \

and by'(35-3)

Hence substituting in (354)

=
4jcp, by Poisson's equation.

Working out the other components similarly (with slight
variations in the case of 6r44) we find

11=22=^33=^44= ~^p. . - (35-6)

The scalar G^g^G^^ -011~0M -083+04*
=87ip.......... (35.7)

Now form the covariant tensor

G^-teitf..... (35-8)
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We have by (35-6) and (35-7)

2>=p,
and all other components vanish..

Having thus found the value of T^ in this special system of

co-ordiuates we could find its general value by (19*31). It is,

however, simpler to proceed as follows. It x^ is a co-ordinate

of a point in the material, consider the quantity,

pt"-^....... (3591)* ds ds v '

Since with respect to our special axes the material is at rest,

=0 (,1=1,2,3), and ^=1 (/K=4).
ICo too

Hence all the components of (35-91) vanish except for

j
M=j;=4 J for which the component is p just like Tffr. This,

however, is a contravariant tensor * and (35-8) requires a

covariant tensor.

We therefore form the associated covariant tensor (

. (35-92)

which agrees with (35*91) in our special co-ordinates.

The equations (35-8) and (35-92) are in covariant form, and
are true in one system, hence they are true in all possible

systems of co-ordinates. They are the general equations of

the gravitational field in a continuous medium.
An alternative form of (35-8) is readily obtained, viz.,

-%g<rrT), . . . (35-93

where T is the associated scalar <7

<"TaT. (This follows since on
inner multiplication of (35-8) by g we obtain Gr=^SnT.)

36. We thus find that in a continuous medium, G-ffr, instead

of vanishing, is equal to a tensor expressing the content and
state of motion of the medium at the point considered. On
the equations here found we have two observations to make.

(1 ) A little consideration will show that notwithstanding the

approximations made at various stages of the proof, the results

are quite rigorous. It is clear that so far as the calculations

for the infinitely small sphere surrounding O are concerned,

*
p is to be treated as an invariant. Whatever the axes chosen, />

is to

Ve the density in natural measure as estimated by an observer moving with

the matter.

F
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we are justified in neglecting the product terms, since in the

limit they will vanish compared with the linear terms.

Another way of seeing this is to consider that Gffr involves

only derivatives up to the second at the origin ;
and there-

fore we need only expand the g's in powers of r as far as r2 ;

but in our units p is of dimensions r"2
, and since the g"s in

rectangular co-ordinates are of zero dimensions, any terms

involving p
2 would be of the form p

2r 4
,
and therefore need

not be retained. The effect of the gravitation of the matter

outside the sphere is eliminated completely by our choice of

co-ordinates. We chose them so that at the #
5

s have the

values (16 3) ? i.e., we use
"
natural measure.'

5

Since our axes

move with the matter at 0, the first derivatives of the 0*s

(expressing the force) will not vanish unless the matter at O
is moving with the acceleration of the field, which is not the

case if there is any internal stress These first derivatives

are omitted from our equations after (35-3), because as already

explained the external matter alone contributes nothing to

G<rr\ further, the cross-terms are zero, because the first de-

rivatives of the #'s arising from the matter inside the sphere
vanish. The result is thus rigorous, provided that in measuring
the invariant density p we use natural measure, ^.e., the mass
and unit volume must be taken according to the direct

measures made byan observer at moving with the material

there.

The argument may be summarised thus : 6>T consists of

terms of types
/ 2+j 2+JiH-^i#i+#iH-terms in I +terms in # ,

where / and E refer to the matter internal and external to

the small sphere, and the suffixes refer to the order of the

derivatives. Terms in I x vanish by the symmetry of the

sphere ; terms in 7 vanish as the sphere is made infinitely
small ; terms in E vanish because we use natural measure ;

the terms E^E^ vanish by Einstein's equations for free

space. All that is left is J 2 , and as the sphere is made infinitely
small our determination of its value becomes rigorous.

(2) In replacing a molecular medium by a continuous

medium, it is not sufficient to average the distribution of mass
and mass-motion only ;

we must also represent somehow the
internal motions. This is done by adding another property to
the continuous medium the pressure, or stress-system. The
tensor Tvr will contain terms corresponding to the pressure ;

these are negligible in practical calculations of the gravitational
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field because the pressure is of order p times the Newtonian

potential, i.e., of order p
a

. The terms are, however,

important in the general equations of momentum and

energy, and we shall consider them more fully in the next

paragraph.
37. In the dynamics of a continuous medium the most

fundamental part is taken by the associated mixed tensor,

T;=rta=^ Po^^, . . . (37-1)

where we have inserted the 2 in order to take account of the

variety of internal motions, and have written p for p in order

to call attention to the fact that it represents the density in

natural measure and not the density referred to the arbitrary
axes chosen.

T may be called the energy-tensor, though it is actually an
omnmm gatherum of energy, mass, stress and momentum.

First consider the meaning of this tensor in the absence of a

gravitational field, and accordingly choose Galilean axes. If

u, v, w are the component velocities of the particles,

'

(37.2)

But by (? 92) the density referred to the axes chosen is

Hence T^g^X ...... (37-3)

Putting in the Galilean values of g^, we have

l*=-~ JSpw2
, Zpvw, Zgwu,

^^ -2;pWj, -Zpu2
, -Z$wv, Zpv (374)

ZpwU'', Zpvw, Zpw2
, Zpw

This tensor may be separated into two parts,the first referring
to the motion, w ,

t? , WQ , of the centre of mass of the particles
in an element, and the second to their internal motions,
tf i *>!> w i> relative to the centre of mass. With regard to the
last part, 2^u1v l represents the rate of transfer of

M-momentum across unit area parallel to the y-plane, and is
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therefore equal to the stress usually denoted by px , . Hence

(374) becomes

p

(37-5)

where p is now the whole density referred to the axes chosen.

Consider the equations

-iz^O........ (37*6)
*v

*

Taking ^=4, and using (37*5), we get the well-known

equation of continuity

-...

ox

Taking /*=!,

Now (37-7) and (37 8) are the fundamental equations of

hydrodynamics. Byassuming Galilean axes we have neglected
any extraneous body-forces, and so the term pX, which
occurs on the right side of (37-8) in the more general form of

the equation, does not appear in this case.

The equation (37-6) is thus equivalent to the general equa-
tions of a fluid under no forces.

31 The equat-n 3TJ/3 ^=0 represents a law of con-

servation. hoose one of the co-o dinates, a?4, as independent
variab'e, and integrate the equation through a three-dimen-

sional volume marked out inthe other co-ordinates. This gives

***
=the surface integral of the normal con *

pone t of (Tl, 2% JJ).

If the volume is such as to include the whole of the material,
7* vanishes on the surface ; the surface-integral therefore
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vanishes, and hence thevolume integral of T* remains constant.
If the surface does not include all the matter, any change of its

content of T *
occurs by a flux across the surface measured by

(2% % jTJ). It will be seen from (37-5) that for the axes there
used T^ represents the negative momentum and the mass (or

energy), and that T &c., represent the flux of these quantities.
Equation (37-6) therefore gives the law of conservation o
momentum and mass, as may be verified from the correspond-
in 5 hydromechanical equations.

39. Equation (37*6) is the degenerate form for Galilean co-
ordinates of the covariant equation

5^=0 ....... (39-11)

where T, is the (contracted) covariant derivative of ZJ (tee

(22 -7)). Equation (39- 1 1 ) thus holds for Galilean co-ordinates,
and it does not contain derivatives of the gr's higher than the
first. Hence by the principle of equivalence it holds generally,
inc uding the case of a permanent gravitational field.

Taking equation (35-8)

multiply by g
rv

. We obtain

G-^=-&*Z .... (39-12)

Take the covariant derivative of both sides, and contract it,

. . . (39-13)

whence by (20-1)

Clearly this equation will have to be an identity, and it may
be verified analytically, using the values (26-3) of G^. For

cr1, 2, 3, 4, this identity gives the four relations between
Einstein's ten equations, which have already been mentioned
as reducing the number of independent conditions to six.

Conversely, from the identity (39-14) we can deduce (39-11),

and hence obtain the equations of hydromechanics and the
law of conservation directly from Einstein's law of gravitation.
Further, by applying the hydromechanical equations to an
isolated particle., we obtain the equations of motion (29).

The mass of a particle has been introduced first as a constant

of integration, and afterwards identified with the gravitation-
mass by determining the motion of a particle in its field

;
it

now appears that it is also the inertia-mass, because it satisfies
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the law of conservation of mass and momentum, which gives
the recognised definition of inertia.

It is startling to find that the whole of the dynamics of

material systems is contained in the law of gravitation ; at

first sight gravitation seems scarcely relevant in much of our

dynamics. But there is a natural explanation. A particle of

matter is a singularity in the gravitational field, and its mass
is the pole-strength of the singularity ; consequently the laws

of motion of the singularities must be contained in the field-

equations, just as those of electromagnetic singularities (elec~

trons) are contained in the electromagnetic field-equations.
The fact that Einstein's law predicts these well-known pro-

perties of matter seems to be a valuable confirmation of this

theory,
The general equation (39-11) enables us to pass from the

equations of a fluid under no body forces to the equations of a

fluid in a field of force. It can be simplified considerably. By
(22-7)

By (26-25) the last term becomes

The second term is equal to

= _
2 a*

<**

since the other two terms cancel on summation,
1

' a

This last result follows, since

9^=0 or 1,

so that rtu+^e%va=0,

Multiply by g* and use (20-15), we obtain

ff^g-dg^-dg*...... (394)
Hence inserting (39-22) and (39-3) in (39 21), we have
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This equation has its simplest interpretation when we choose

co-ordinates, so that V g=l, that is to say, the volume of a
four-dimensional element is to be the same in co-ordinate

measure as in natural measure. Owing to the considerable

freedom of choice of co-ordinates, allowed by Einstein's equa-
tions, it is always possible to do this. In that case (3945)
becomes

Comparing this with (37 6), which holds when there is no
field of force, we see that the term on the right represents
the momentum and energy transferred from the gravitational
field to the material system. As a first approximation (re-

taining only T44=p, and g44=l 2Q) we see that it gives,

for ju=l, 2, 3, the terms pJf, pY, pZ of the usual hydro-

dynamical equations, which were omitted in (37 8).

40. Propagation of Gravitation.

The velocity of light being a fundamental relation between

the measures of time and space, we may expect the strains

representing a varying gravitational field to be propagated
with this velocity. We shall show how to derive the equations

exhibiting the propagation.
In the theory of sound, the general equation of disturbances

propagated with unit velocity is

where <D is zero except at the source of the disturbance. The

general solution is

the integral being taken through the volume occupied by the

source of disturbance, and the value of
'
taken for a time

I_r
'

3 where r' is the distance of the volume dV from the point

considered. Thus 9 is a retarded potential, and (40-12) ex-

hibits the effect as delayed by propagation.
In the case of sound the velocity depends to a slight extent

on the amplitude, and (40-11) is only strictly true if the square

of 9 is negligible. Similarly the velocity of light depends to a

slight extent on the gravitational field ( 32) ; consequently we
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can only expect to obtain an equation of this form
if^

w

neglect the square of the disturbance, so that the equation

become linear.

The origin of gravitational waves must be attributed^

moving matter ; and, since G> vanishes except in a regioi

occupied by matter, we may take G^ as the analogue of <D

We shall examine whether the disturbance can be representec

by a quantity h^ satisfying

=2GU, ..... (4021

where the exact significance of h^
is yet to be found. We

shall regard h^ as a small quantity of the first order
; the

deviations of the g^ from their Galilean values will also be of

the first order. Small quantities of the second order will be

neglected.

If, as usual,

and A

Then, multiplying (40 21) successively by g
v" and g*

v
, we have

to this approximation,*

DA*=2SJ . . . . . (40-22)

and Q&=2 ..... (40-23)

Hence Q(*J-&#)=2(6? -Jtf0)

{=z~lnTl by (39-12).

To the present approximation (37-6) holds, so that

Having regard to boundary conditions, the solution is clearly

* The gp behave as constants until we reach equation (40-5), because
their derivatives, which are small quantities of the first order, only appear
in combination with the small quantities k^y or G/w. The gp>v accordingly
pass freely under the differential operators.
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Consider the expression

_1 A. j^3*tf .8^6.
2 aB.t

ff Va^^a^ a

which to our approximation

By (40-3) the first two terms cancel with the last, and for

Galilean values of g*^ the third term is simply

Thus by (40-21) the expression (404) reduces to G>.

Neglecting squares of small quantities, G> (26-3) reduces to

2 a

Comparing (404) and (40-5) we see that the A's must be

equal to the gr's or rather since the A's have been treated as

small quantities, they must be the deviations of the #'s from

their constant Galilean values. Writing d^v for the Galilean

values of g^v (16 3), then

fc=<5^+7w, ..... (40-6)

and A^ satisfies the equation of wave-propagation (40*21).

By (40*12) the solution of the propagation equation is

This can be used for the practical calculation of g^ due to

an arbitrary distribution of moving matter. It is necessary,

as inthe corresponding calculation of retarded electromagnetic

potentials, to allow for the variation of // from point to

point of the body ;
the boundary of &V does not coincide with

the limits of the body at any one instant. Thus for a particle

of mass m, we have *

*
See, for example, Lorentz,

" The Theory of Electrons," p. 254 ; or

nnragligutti,
" The Principle oi Bel&tivity," p 108.

Cunnragligutti,
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where vr is the velocity in the direction of r, and the square
bracket indicates retarded values. As is well known [r(l 0,)]

is to the first order equal to the unretarded distance r, so that

notwithstanding the finite velocity of propagation the force is

directed approximately towards the contemporaneous position
oi the attracting body. It was lack of knowledge of this

compensation which led Laplace and many following him to

state that the velocity of gravitation must far exceed the

velocity of light.

The practical application of these formulae is, however, very
limited. In a natural system (e.g , the solar system) the

relative velocities (u) are due to the gravitational field and u*

is a small quantity of the first order. Consequently our

approximation is not good enough to take account of T ll7
T12 ,

&c., in natural systems ;
it can only include components with

suffix 4.* The fact is that the whole idea of propagation from

a point-source is an abstraction ; actually the motion of the

source, or singularity, is but the symbol of the changes occurring
in all parts of the field ; we cannot say whether the motion is

the cause or effect of the gravitational waves.

The present solution is a particular solution. It gives

unique values of the ^ , but these may, of course, be subjected
to arbitrary transformations.

* For the higher approximations needed in the problem* of the solar

system, see De Sitter,
"
Monthly Notices," Dec. 1916.



CHAPTER VII.

THE PRINCIPLE OF LEAST ACTION.

41. Lagrange's Equat^ons.
We shall again restrict the choice of co-ordinates so that

V __ i. Einstein's equations (26-3) for the field in free space
then becomes simplified to

^=--i-{^o}+{^,a}{-a,^}=0. . (41-1)
O&a.

We shall regard g^
v as a generalised co-ordinate (g), and

a? l3 x2 , #3, #4 as independent variables a four-dimensional time.

Writing g%
v for fig^/dx^, which will then be a generalised

velocity (q), we shall show that equations (414) can be ex-

pressed in the Lagrangian form.

where Z=gr {/ift a} {vo, /?} ..... (41-8)

it being understood that the g^ are expressed as functions of

the gr.
We have from (41-3)

L {& a} [va, $} dg
v
+2g>"(^ a] d {va, 0} ,

since in the last term /* and v are dummies.

= - f^, a}

But

The last two terms in the bracket will cancel in the summa-
tion after inner multiplication by {/*j8, a} , because ^ and /#,

v and A are interchangeable-simultaneously. Also by (394)

Hence di= - {/i/J, a} (va,
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Therefore

showing that (41-1) and (41-2) are equivalent.
As in ordinary dynamics, Lagrange's equations are equiva-

lent to

is stationary .... (41*5)iLdz

for variations of g*", dr being the iour-dimensional element of

volume, here representing the independent variable. It must
be remembered that the variations are limited by the con-

straint V <7=1.

42. Principle of Least Action.*

Following out the dynamical analogy dL/dg*
v or dLfiq

is to be regarded as a momentum (p). The system is dynamic-
ally of the simplest kind, since L does not contain the

<f

time,"

XP, explicitly, and ;t is a homogeneous quadratic function of

the
"
velocities." By the properties of homogeneous functions

.at
2L=Zq-Z

v"

Since (pq+qp) is a perfect differential,

]S(pq+qp}dT
will be equal to a surface integral ; and it will, therefore be

stationary for variations of g*
v
(the variations as usua being

supposed to vanish at the boundary).

Thus
8f2qpdT=-dl2qpdr=-2dJLdr

. . (424)

Hence, if we write

H=*L+2qp ...... (42-2)

by (41-5) and (42-1)

Iffdr is stationary. . f . (42-3)

* The strict analogue of the principle of least action is the stationary

property of fj^qyd^ The restriction in dynamics that the energy is not
to be varied corresponds to V g=\ t (Cf. 43)
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By (414)

Hence (42-2), (41-3) and (41-1) give

We can therefore write the result (42-3) thus

J
G . V--J. & is stationary . * (42 4)

J

since V </=l._
But 6r and V g . dr are invariants (20-3) ; so that (42-4) has

no reference to any particular choice of co-ordinates, and the

restriction V^==l can now be removed. It is thus a more

general result than (41-5).

43. Energy of the Gravitational Field.

Reverting to the restriction V 0=1, multiply (41-2) by tf

.

Remembering that

we have, adding (43-1) and (4 -2),

3-^\ 8-" iA ^ Q\v
,} .... (*0'd)

=
-IfajLrf

, (43-4)

where -16rc S=ffS'^-ffSl- (*3
'5)

We have used the property of g$ as a substitution operator.

The quantity t$ defined by (43-5) is the analogue of the
^ T

Hamiltonian integral of energy, 2qrL. In free space

6^=0, and (434) becomes

s (;- (4S
-

6)

showing that $ is conserved (38).
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When matter is present (434) gives

===

dx~
v
~~

2^v

since, when g= 1,

Hence by (35-8)

=--r- by (39-5).
d*'*

Therefore

0. ..... (43-8)

This is the law of conservation in the general case when
there is interaction between matter and the gravitational
field. We see that the changes of energy and momentum of

the matter can be regarded as due to a transfer from or to the

gravitational field, the total amount being conserved. We
have, in fact, traced the disappearing portion of the material

tensor T^ and shown that it reappears as the quantity
t belonging to the gravitational field.

In order to represent the phenomena in this way we have
had to restrict the choice of co-ordinates by keeping the volume

of a region of space-time invariant (V g=l). Otherwise

the equation takes the more general form (39-11) which cannot

immediately be interpreted as a law of conservation. It should

be noted that, unlike Tp, the quantity is not strictly a tensor.

44:. The Method of Hilfoert and Lorentz.

An alternative method of derivingthe fundamental equations
of this theory is based on the postulate that all the laws of

mechanics can be summed up in a generalised principle of

stationary action, viz.,

....)\.dT=Q.. . (44-1)

Here H^H^H^Bxe invariants* involving, respectively, the

parameters describing the gravitational field, the electro-

magnetic field, and the material system. If we consider

* Invariant because the equation must hold in all systems of co~ordm*tea,
and we already know that the factorVg . d^ is invariant.
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matter and radiation in bulk we may add a fourth, term

involving the entropy, so as to bring in thermodynamical
phenomena, and so on. The variations are taken with respect
to these parameters, their values at the boundary of integration

being kept constant.

It is well known that the laws of mechanics of matter and
of electrodynamics can be expressed in this form, so that we
are here chiefly concerned with H. We already know from

(424) that Einstein's theory is given by H-^G. Now G is,

in fact, the principle invariant of the quadratic form g^dx^dx,,,

viz., the Gaussian invariant of curvature. This aspect of the

theory seems to eliminate any element of arbitrariness which

may have been felt when we fixed on the contracted Biemann-
Christoffel tensor for the law of gravitation.
To interpret G as a curvature, consider a surface drawn in

space of five dimensions, whose equation referred to the lines

of curvature and the normal (z) at a point on it may be written

2z=Jc lx^+k^xl+k3xl+k^+'big^i powers . (44-2)

where k
l9 Jc& &3 ,

&4 are the reciprocals of the principle radii of

curvature.

Then ds*=dz*+ Zdx\.

Eliminating % by (44-2)

ds2
~(l+k\xl)dal+ ____ +2* 1A;aa?1a?2diB1da?t+. . (44*3)

Hence at the origin,

9W=1, SW=0 (M~ v
)> dgjdx<r=0.

The only surviving terms in G=gf"v
G^v are

-^
We easily find that

In three dimensions we have only two curvatures, and i]&2

is known as Gauss's measure of curvature, i.e., the ratio of the

solid angle contained by the normals round the perimeter of

an element to the area of the element. The expression (44-4)

is a generalisation of this invariant to five dimensions.

The curvature G in ordinary matter is quite considerable.

In water the curvature is the same as that of a spherical space

of radius 570,000,000 km. Presumably, if a globe of water of

this radius existed, there would not be room in space for

anything else.
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45. Electromagnetic Equations.

The electromagnetic field is described by a covariant vector

HL. In Galilean co-ordinates,

X^PI-GIH, <D), . . . (45-i)

where F, G, H is the vector potential and <D the scalar

potential of the ordinary theory.

If n^ is the covariant derivative of #M ,
we have by (22-2)

J*>, =#^#^=8 covariant tensor,

=F v, say (4:5*2)

The electric and magnetic forces are given in the electro-

magnetic theory by _ _ ^ ^
- - -

Hence by (45-2) the value of -F^ in Galilean co-ordinates is

= -y ^ -Z . . . (4541)

y -a -F
-ft a -Z

v X Y Z

and the associated contravariant tensor, F^=-g^g"^F^, is

f~ = -y fi Z . . . (45-42)

y -a F
-fa Z
_x -y -z o

We can now express Maxwell's equations in covariant form.

In the ordinary theory they are

9?_?!_J^ 3XJ&=_W ZYJX^J^ _
dy 8z~~ & '

dz fa dt
'

3 9y
' ^

'

'

8a dZ
(45>52)

where the velocity of light is unity, and the Heaviside-Lorentz

unit of charge is chosen so that the factor in disappears. The
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electric current u, v, w and the density of electric charge p
form a contravariant vector, since

. fdx du dz dt\ . . *
(u, v, w, p)

=
2e(^ , , 5 ,w) per unit volume,*

W% say .......... (45-6)

Equations (45 51) and (45 54) may be written,

3^+^-+^=
3 .... (45-71)

dx* 3^ #*
v '

and the remaining equations (45*52) and (45-53) give

Now (45-71) is satisfied identically on substituting the values

of F^ from (45 2), so that (45-2) and (45-72) represent the

fundamental electromagnetic equations. The former is already
covariant, and the latter Is made covariant by writing the

covariant derivative ior the ordinary derivative. Thus

(45-81)

(45-82)v ;

are the required equations. These hold in the gravitational
field because the conditions for the application o the principle
of equivalence ( 27) are satisfied.

The expression Fy may be simplified as in 39
; but owing to

the antisymmetry of F^ the term corresponding to (39-3) dis-

appears, and the equation reduces to

"

(45-9)^

-g 3

The fact that Maxwell's equations can be reduced to a co-

variant form shows that all electromagnetic phenomena
described by them will be in agreement with the principle of

relativity.

* The occurrence of d$ in#bead of At in the denominator is due to the

Michelson-Morley contraction, $=dt/d$, which makes the estimate ol tuut

volume by a fixed observer dmer from that made by an observer moving
with the electrons. (Gf. equation '7 $5).)

G
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46. The Electromagnetic Energy-Tensor.

According to the electromagnetic theory, the components of

mechanical force on unit volume containing electric charges
are

k 2
~

p F-j-aw y
&8=pZ+$w a

and the negative rate of doing work is

since the magnetic force does no work.

By (4541) and (45-6), these give

so that kv is a vector.

But kv represents the rate at which the momentum and

negative energy of the material system are being increased,

i.e., in Galilean co-ordinates,

If there exists a corresponding tensor Z?Jfor the electromagnetic
field, this must change by an equivalent amount in the opposite
direction in order to satisfy the law of conservation. Tbus

It is not difficult to show from (46-1) and (46-3) that

Et=-F vft
F'*+ ig*F'"Fn. . . . (464)

We omit the proof as the precise value is not of great interest

to us. It is sufficient to know that the expression is of the

necessary tensor-form, so that an energy-tensor for the electro-

magnetic field exists

In general co-ordinates (46 2) and (6-3) are replaced by
the covanant equations,

-T;a=t,=ff;a . ... (405)

in accordance with the principle of equivalence.
When no matter is present this gives $"a=0, and we can

derive the reaction of the gravitational field just as in (39-5).

It follows that electromagnetic energy in the gravitational
field experiences a force just as material energy does. Further
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lectiomagnetic energy exerts gravitation, because (39-13) and
(46 5) give

the lower a denoting covariant differentiation.

Hence on integrating, (3942) must be replaced by

In fact the electromagnetic energy-tensor must simply be
added on tcrthe material energy-tensor throughout our work.
When V g=l, we have the most general law of conserva-

tion for triangular interchanges between matter, electro-

magnetism and gravitation.

^O- . . . . (46-6)
a

47, The Aether.

The application of the Calculus of Variations to (44*1) gives
a number of differential equations equal to the number of

parameters varied ; but, according to a general theorem due
to Hilbert, there are always four identical relations between
these equations (the number 4 corresponding to the dimensions
ot dt). The number of independent equations is thus four
less than the number of unknowns, so that in addition to

arbitrary boundary conditions we can impose four arbitrary
relations on the parameters. It is this freedom of choice of

co-ordinates that is so fundamental a characteristic of the

generalised principle of relativity
If we vary H l only we find the ten equations (3^=0. The

identical relations in this case have been given in 39. If we
vary the electromagnetic variable K^ as well, we get 14

equations, of which 10 are independent, to determine 14 un-
knowns Within certain limits we can give arbitrary values to
four of the unknowns, and the other ten willthen be determined

definitely by the equations and the boundary conditions. If

we elect to fix the values of the four co-ordinates A in this

way (so that they are, as it were, disposed of) the g^ will

become fixed, that is to say, there will be only one possible

space-time. The phenomena, electromagnetic as well as

gravitational, will all be described by the g^ which represent
the state of strain of this space-time. This space-time mav
be materialised as the aether, and the aether-theory does in

fact attribute electromagnetic phenomena to strains in this

supposed absolute medium.
G 2
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This is only a crude indication of the relation of the aether-

theory to our relativity theory. As is well known, the modern

aether-theory involves rotational strains. Moreover, we can-

not get rid of the electromagnetic variables by putting them
equal to zero, because they form a vector, which cannot vanish
in one system of co-ordinates without vanishing in all.

48. Summary of the Last Two Chapters. It may be useful

to review the results which have been obtained from the point
at which we introduced the energy-tensor T^ of the material

system. Initially it was brought in for the practical purpose
of calculating the gravitational field of a material body ;

but
this has led on to a discussion of the general laws of dynamics.
As mentioned in 6, it is important, if we wish to adopt the

principle of relativity, to show that the laws of nature which
we generally accept are consistent with the principle ; or ?

if

not., to modify them so that they may become consistent. We
have had to modify one law the law of gravitation. The
laws of mechanics (Newton's laws of motion) are equivalent
to the conservation of momentum and the conservation of

mass. We have in 7(c) found it necessary to generalise the
latter by admitting that energy has mass , and the conservation
of mass is absorbed in the conservation of energy. The most

generabstatement of these two principles of conservation for

material systems is found in the general equations of hydro-
dynamics (or of the theory of gases), viz , (37-7) and (37-8),
and it is therefore sufficient to verify these. We have done
that by showing that they may be expressed in tensor-form.
We have even gone further ; we have shown that these laws
can actually be deduced from the law of gravitation. They
correspond to the four identical relations between Einstein's

ten equations of gravitation ( 39).

It has similarly been verified that our electromagnetic
equations are of tensor-form and are therefore consistent

with relativity. But in this case we have not deduced the

electromagnetic equations from anything else
; we have

merely shown their admissibility. The energy-tensor JE of

the electromagnetic field is found from the consideration that
in interchanges between the material and electromagnetic
systems the total momentum and energy must remain constant.
When the co-ordinates are not Galilean, gravitational forces

will be acting and the total energy and momentum of the
material and electromagnetic systems will be altering. We
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have shown how to find this flux of energy and momentum
(39-5), and in 43 we have traced it into the gravitational
field, showing that it reappears there as the quantity , which,
moreover, is conserved when no transfer of this kind is going
on. There is, however, one reservation necessary ; unlike 1^
and E*

9 t%
is not a tensor, and in order that this complete

conservation of energy and momentum may be apparent we
have to choose co-ordinates so that V - g=l. This does not

imply any exception to the physical law of conservation,
because we can always choose co-ordinates satisfying this

condition It is merely that the energy-tensor is slightly
more general than the physical idea of energy and momentum ;

the former may be reckoned with respect to any co-ordinates,
the latter must be reckoned with respect to co-ordinates

satisfying V g=l.
From the existence of an energy-tensor for the electro-

magnetic field, it is deduced that electromagnetic energy must

experience and exert gravitational force.

The remainder of our work has been principally concerned
with showing that our equations are equivalent to a principle
of least action. From a theoretical standpoint there is a great
deal to be said in favour of reversing the whole procedure,

starting from the principle of least action as a postulate ; but
I have preferred the present course as more elementary.
Some difficulty may be found in the fact that the time-

component of a four-dimensional vector is usually called by a

different name from the space-components. The following
table may be useful for reference :

Vector. Space-Components. Time-Component.

Ti negative momentum energy (mass).

T l
flux of negative momentum flux of energy (mass).

kf,. ...... force negative rate of doing work.

KH negative vector potential... electric scalar potential.

JA ...... electric current-. density" ... electric charge-density.



CHAPTER VIII.

THE CURVATURE OF SPACE AND TIME.

49. We have now presented the laws of gravitation, of

hydromechanics, and of electromagnetism, in a form which
regards all systems of co-ordinates as on an equal footing.
And yet it is scarcely true to say that all systems are equally
fundamental ; at least we can discriminate between them in a

way which the restricted principle of relativity would not
tolerate.

Imagine the earth to be covered with impervious cloud. By
the gyro-compass we can find two spots on it called the Poles,
and by Eoucault's pendulum-experiment we can determine an
angular velocity about the axis through the Poles, which is

usually called the earth's absolute rotation. The name fck

abso-
lute rotation

"
may be criticised ; but, at any rate, it is a name

given to something which can be accurately measured On
the other hand, we fail completely m any attempt to determine
a corresponding

* k

absolute translation
"

of the earth It is

not a question of applying the right name there is no measured
quantity to name. It is clear that the equivalence of systems
of axes in relative rotation is in some way less complete than
the equivalence of axes having different translations ; and
this may perhaps be regaided as a failure to reach the ideals
of a philosophical principle of relativity.

This limitation has its practical aspect. We might suppose
that from the expression (28*8) for the field of a particle at
rest it would be possible by a transformation of co-ordinates
to deduce the field of a particle, say, in unifoim circular motion.
But this is not the case. We may, of course, reduce the
particle to rest by using rotating axes ; but we find it necessary
to take an entirely different solution of the partial differential

equations, satisfying different boundary conditions.
We have not hitherto paid any attention to the invanance

of the boundary conditions ; and it is here that the break-
down occurs. The ases ordinarily used in dynamics are suck
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that as we recede towards infinity in space the g^ approach
the special set of values (16-3). On transforming to other co-

ordinates the differential equations are unaltered
;
but usually

the boundary values of the g^v , and consequently the appro*
priate solutions of the equations, are altered. We can, there-

fore, discriminate between different systems of co-ordinates

according to the boundary values of the #'s ; and those which
at infinity pass into Galilean co-ordinates may properly be
considered the most fundamental, since the boundary values

are most simple. The complete relativity for uniform trans-

lation is due to the boundary values as well as the differential

equations remaining unaltered.*

We have based our theory on two axioms the restricted

principle of relativity and the principle of equivalence. These
taken together maybe called the physical principle of relativity.
We have justified, or explained, them by reference to a philo-

sophical principle of relativity, which asserts that experience
is concerned only with the relations of objects to one another
and to the observer and not to the fictitious space-time frame-

work in which we instinctively locate them. We aie now led

into a dilemma
;
we can save this philosophical principle only

by undermining its practical application. The measurement
of the rotation of the earth detects something of the nature

of a fundamental frame of reference at least in the part of

space accessible to observation. We shall call this the
"

inertial frame." Its existence does not necessarily contradict

the philosophical principle, because it may, for instance, be

determined by the general distribution of matter in tiie

universe ;
that is to say, we may be detecting by our experi-

ments relations to matter not generally recognised. But

having recognised the existence of the inertial frame, the

philosophical principle of relativity becomes arbitrary in its

application. It cannot foretell that the Michelson-Morley ex-

periment will fail to detect uniform motion relative to this

frame ; nor does it explain why the acceleration of the earth

relative to this frame is irrelevant, but the rotation of the

earth is important.
The inertial-frame may be attributed (1) to unobserved

world-matter, (2) to the aether, (3) to some absolute character

* Owing to the four additional conditions that can be imposed on the (fn

the boundary values are not sufficient to determine the co-ordinates uniquely
and the principle of relativity is valid in its most complete sense for trans-

formations considerably more general than uniform translation.
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of space-time. It is doubtful whether the discrimination

between these alternatives is more than word-splitting, but

they lead to rather different points oi view. The last alterna-

tive seems to contradict the philosophical principle of relativity,

but in the light of what has been said the physicist has no

particular interest in preserving the philosophical principle.

In this chapter we shall consider two suggestions towards a

theory of the inertial frame made by Einstein and de Sitter

respectively. These should be regarded as independent specu-

lations, arising out of, but not required by, the theory hitherto

described.

The inertial frame is distinguished by the property that the

g^ referred to it approach the limiting Galilean values (16*3)

as we recede to a great distance from all attracting matter.

This is verified experimentally with considerable accuracy ;

but it does not follow that we can extrapolate to distances

as yet unpluinbed, or to infinity. If it is assumed that the

Gf-alilean values still hold at infinite distances, the inertial

frame is virtually ascribed to conditions at infinity, and its

explanation is removed beyond the scope of physical theory.
We may, however, suppose that observational results relate to

only a minute part of the whole world, and that at vaster

distances the g^ tend to zero values which would be invariant

for all finite transformations. In that case all frames of

reference are alike at infinity, and the property of the inertial

frame arises from conditions within a finite distance. In that

case physical theories of the inertial frame may be developed.
The ascription of the inertial frame to boundary conditions

at infinity may also be avoided by abolishing the boundary.
This is really only another aspect of the vanishing of the ghv
at infinity. Our four-dimensional ^pace-time may be regarded
as a closed surface in a five-dimensional continuum

;
it will

then be unbounded but finite, just as the surface of a sphere
is unbounded.
We have seen (44) that wherever matter exists space-time

has a curvature. It might seem that if there were sufficient

matter the continuum would curve round until it closed up ;

but it has not been found possible to eliminate the boundary
so simply. I think the difficulty arises because time is not

symmetrical with respect to the other co-ordinates ; in general
matter moves with small velocity, so that the different com-

ponents of the energy-tensor T% are not of the same order of

magnitude.
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50. Einstein suggests that in measurements on a vast scale

the line-element has the form

This expression includes the effects of the general distribution

of matter through space ; but there will be superposed the

local irregularities due to its condensation into stellar systems,
etc.

The expression (50-1) can be interpreted* as belonging to a

three-dimensional space which forms the surface of a hyper-

sphere of radius jR in four dimensions, the time being recti-

linear. Let be the origin of co-ordinates (Kg. 5), A the

FIG. 5.

centre of the hypersphere, and % the angle OAC. If is the

azimuthal angle of the plane OAC, the line-element at C for

an ordinary sphere would be

The expression (50-1) is the extension of this for an extra

dimension measured by 9.

In the figure the circumference of the circle CC' is 2rcjRsin%,

but its radius measured along the spheie is R%. Similarly in

our curved space the surface of a sphere of radius R% will be

; successively more distant spheres will increase in

* Other interpretations are possible ; but this is probably the easiest

conception for those unfamiliar with non- Euclidean geometry. For this

reason I do not here describe the interpretation in terms of
"
elliptical space,

which has certain advantages.
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area up to a radius %nR, and afterwards decrease to a point

for the limiting distance nR. The whole volume of space is

finite and equal to 2?i
2R* in natural measure.*

From (50*1) the values of G> can be calculated just as in

28. We find, in fact,

G^jza,** except 044=0
1

;
. . . (50-2)

so that =
R* '

Hence by (35 8)
1 3

=-~^i except -8^44==
-

2
. . (503)

Unless we are willing to suppose that the matter in the universe

is moving with speeds approaching that of light, T^ is much

greater than the other components, and it is clearly impossible

to satisfy (50-3). The only possible course is to make a slight

modification of the law of gravitation. Neglecting the motion

of matter we shall have TM= p, and the other components
vanish. The modified law that satisfies (50 2) must then be

. . . (504)

where 1=1/R* and p^
Equation (504) replaces (35*8). The radius R may

^

be as

great as we please, so that we may satisfy our scruples without

introducing any modification perceptible to observation.

In Hamilton's principle becomes replaced by 041,
and space-time has a natural curvature 41 when no matter is

present ;
this curvature is increased to 6/1 where there is

matter having the average density. (Cf. (444) with &4=0.)
Since the whole volume of space in natural measure is

27r
2
JS3 5 the total mass of matter is 2jt*R*p=%aR. The mass

of the sun is 147 kilometres ; the mass of the stellar system may
be estimated at 109Xsun; let us suppose further that the

spiral nebulae represent 1,000,000 stellar systems havmg this

mass. Even this total mass will only give us a universe of

radius 1016
kilometres, or about 30 parsecs much less than

the average distance of the naked-eye stars. Einstein's

hypothesis therefore demands the existence of vast quantities
of undetected matter which we may call world-matter.

* The observer will probably Introduce measures more convenient to
himself (c/. 52), so that in his co-ordinates the limiting distance may be oo

or even beyond.
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Some curious results are obtained by fol >wing out the
properties of this spherical space. The j^arallax of a star
diminishes to zero as the distance (in natural measure) increases

up to ^TiR ; it then becomes negative and reaches 90 at a
distance nR. Apart from absorption of light in space we
should see an anti-sun, at the point of the sky opposite to the
sun equally large and equally bright,* the surface-markings
corresponding to the back of the sun. After travelling

"
round

the world "
the sun's rays come back to a focus. Since p andR are

Delated, it has been suggested that we can use the
invisibility of this anti-sun to give a lower limit to R, assuming
that no light is lost in space except by the scattering action
of the world-matter. But it appears to have been overlooked
that Einstein's new hypothesis is inconsistent with relativity
in its ordinary sense

; the anti-sun will not be a virtual image
of the sun as it is now, but of the sun as it was when it emitted
the light perhaps millions of years ago, when it was in another
part of the stellar system. Einstein has restored the diffe;-
entiation between space and time by assuming the space-tin e
world to be cylindrical, so that the linear direction gives an
absolute time. It is only locally that we can still mate
Minkowski's transformation

; rigorously the physical punciple
of relativity is violated since space-tune is no longer isotropic.We regret being unable to recommend this rather picturesque
theory of anti-suns and anti-stars. It suggests that only a
certain proportion of the visible stars are material bodies,
the remainder are ghosts of stars, haunting the places where
stars used to be in a far-off past.

Owing to this violation of the restricted principle of relativity
we have a feeling that Einstein's new hypothesis throws away
the substance for the shadow. It is also open to the serious
criticism that the law of gravitation is made to involve a
constant 1, which depends on the total amount of matter in
the universe (A=7i

a
/4M 2

). This seems scarce y conceivable ;

and it looks as though the solution involves a" very artificial

adjustment,
51. An alternative proposal has been made by de Sitter

which seems much less open to objection. He takes for the
line element

(5ia)
For constant time the three-dimensional space is spherical as-

in (50-1) ; but there is also a curvature in the time-variable.

*
Disregarding the sun's absolute motion referred to later.
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With the present variables this is not of a simple kind, but

setting

sin%=smf sin o>
j , . (51-2)

tan (it/R)=eo$ Ctan oJ
we find

which corresponds to spherical polar co-ordinates (jR, a>, f, 0, 9)

in space of five dimensions. By measuring C from different

azimuths we perform an operation corresponding to Min-

kowski's rotation of the time-axis, so that there is here DO

absolute time, and the original principle of relativity is fully

satisfied.

The properties of de Sitter's space-time are best recognised
from (51-1). Near the origin we have ordinary Galilean space-

time. As we recede, space has the spherical properties already

mentioned, and in addition measured time (ds) begins to run

slow relati ve to co-ordinate time (dt). Fin allv at v &fca ^#. at

A natural distance fTtR, time stands still. At any fixed point
ds is zero however large dt may be, so that nothing whatever

can happen however long we wait.

Of course, this is merely the point of view of the observer

at the origin of co-ordinates. All parts of this spherical con-

tinuum are interchangeable ;
and if our observer could transport

himself to this peaceful abode, he would find Nature there as

active as ever. Moreover, adopting the co-ordinates natural

to his new position, he would judge his old home to be in this

passive state. There is a complete lack of correspondence
between the times at the two places. They are, as it were,

at right angles, so that the progress of time at one point has

no relation to the perception of time at the other poiat
The line-element (51-1) leads to

and accordingly the law of gravitation is taken to be (504),
with

A=3/J2
2

.

The aggregate curvature due to matter is here neglected in

comparison with the natural curvature due to the modification

of the law of gravitation, and there is no assumption of the

existence of vast quantities of matter not yet recognised.



THE CURVATURE OF SPACE AlSiB TIME. 89

There is no anti-sun on de Sitter's hypothesis,, because light,

like everything else, is reduced to rest at the zone where time

stands still, and it can never get round the world. The region

beyond the distance ^nR is altogether shut off from us by
this barrier of time. The parallax of a star at this distance

will be such as corresponds to a distance R in Euclidean space,
and this is the minimum value possible.
The most interesting application of this hypothesis is in

connection with the very large observed velocities of spiral

nebulae, which are believed to be distant sidereal systems.
Since <\/g^=(x>s %, the vibrations of the atoms become slower

(in the observer's time) as cos % diminishes, in accordance

with 34. We should thus expect the spectral lines to be

displaced towards the red in very distant objects, an effect

which would in practice be attributed to a great velocity of

recession. It is not possible to say as yet whether the spiral

nebulae show a systematic recession, but so far as determined

up to the present receding nebulae seem to preponderate.

Superposed on the (spurious) systematic radial velocity will

be the individual velocities of the nebulae. It is scarcely

possible to say what these are likely to be without making
some assumption. There is no meaning in absolute motion,

and if two systems are entirely independent, so that their

relative motion has no physical cause, it must be quite arbitrary,

and there is no reason to expect it to be small compared with

tho velocity of light. If, however, the systems have separated
from one another, it can be shown by rather laborious calcu-

lations* that their velocities will tend to become more diverse

as they recede, up to the limit ^nR for which the velocities

are comparable with that of light. We should thus have an

explanation of the large velocities of the spirals, averaging
300-400 km. per sec., and we could perhaps form an estimate

of the value of R.

It must be remembered that in natural measure the internal

motions of stars in a spiral system will be of the same magni-
tude as in our own system, owing to the homogeneous character

of de Sitter's space-time. In co-ordinate measure these in-

ternal motions will be smaller owing to the transformation of

the time. The possibility of large divergent motions of the

systems as a whole depends on the large separation between

them.

* De Sitter,
"
Monthly Notices," November, 1917.
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52. So far we have used spherical co-ordinates, but we can

map the spherical space oi Einstein or of de Sitter on a fiat

space by performing the central projection r=R tan %
r will be"represented by OP in Fig. 5, and the variables r, 6, c*

will satisfy Euclidean geometry. This does not mean that

measured space is Euclidean ;
but that we multiply our

measures by suitable factors in order to obtain results which

will fit together in Euclidean space, just as we did for a local

gravitational field in 28. With r as variable (50 I) and

(51-1) become, respectively,

where sl/R 2
.

These show that at
*'

infinity
"

(i.e., r=<x>
)
the values oi g^

in rectangular co-ordinates approach the respective limits.

EINSTEIN. DE SITTER. GALILEO.

0000 0000 -1000
0000 0000 0-100
0000 0000 00-10
0001 0000 0001

the Galilean values being added for comparison.
De Sitter's limiting values are invariant for all transforma-

tions ;
Einstein's only for transformations not involving the

time ; the Galilean values for the transformation oi uniform

motion and a limited group of other transformations

De Sitter's hypothesis thus appears to present the greatest

advantages ;
but it will not satisfy the followers of Mach's

philosophy. He derives his mertial-frame from the spherical

property of space-time which in turn is derived from the slightly

modified law of gravitation ;
it is not determined by anything

material The followers of Mach maintain that if there were

no matter there could be no inertial frame, and it appears
that this is Einstein's reason for preferring his own suggestion.

In his theory if all matter were abolished, R would become

zero and the world would vanish to a point. There is some-

thing rather fascinating in a theory of space by which, the

more matter there is, the more room is provided. It is

satisfactory, too, from Einstein's standpoint, because he is

unwilling to admit that a thinkable space without matter
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could exist. For our pait, we feel equally unwilling to assent
to the introduction of vast quantities of world-matter, which,

(to quote de Sitter)
"

fulfils no other purpose than to enable
us to suppose it not to exist."

53. In this discussion of the law of gravitation, we have
not sought, and we have not reached, any ultimate explanation
of its cause. A certain connection between the gravitational
field and the measurement of space has been postulated, but
this throws light rather on the nature of our measurements
than on gravitation itself The relativity theory is indifferent

to hypotheses as to the nature of gravitation, just as it is

indifferent to hypotheses as to matter and light. We do not
in these days seek to explain the behaviour of natural forces in

terms of a mechanical model having the familiar characteristics

of matter in bulk ; we have to accept some mathematical

expression as an axiomatic property which cannot be further

analysed. But I do not think we have reached this stage in

the case of gravitation
There are three fundamental constants of nature which stand

out pre-eminentK
T

The velocity of light, 3 00. 10 10 C.GLS units
; dimensions LT~\

The quantum, 6-55. 10' 27
, ML*T~\

The constant of gravitation, 6 66 . 1Q~8
; M- 1L*T-*.

From these we can construct a fundamental unit of length
whose value is

4XlO- 33 cms.

There are other natural units of length the radii of the

positive and negative unit electric charges but these are of

an altogether higher order of magnitude.
With the possible exception of OsborneReynolds's theory of

matter, no theory has attempted to reach such fine-grainedness
But it ts evident that this length must be the key to some
essential structure. It may not be an unattainable hope that

some day a clearer knowledge of the processes of gravitation

may be reached ; and the extreme generality and detachment

of the relativity theory may be illuminated by the particular

study of a precise mechanism.
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